

Lecture Notes in Computer Science 4721
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Willem Jonker Milan Petković (Eds.)

Secure
Data Management

4th VLDB Workshop, SDM 2007
Vienna, Austria, September 23-24, 2007
Proceedings

13

Volume Editors

Willem Jonker
Milan Petković
Philips Research Europe
High Tech Campus 34
5656 AE Eindhoven, The Netherlands
E-mail: {willem.jonker, milan.petkovic} @philips.com

Library of Congress Control Number: 2007935172

CR Subject Classification (1998): H.2.0, H.2, C.2.0, H.3, E.3, D.4.6, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75247-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75247-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12165858 06/3180 5 4 3 2 1 0

Preface

Although a number of cryptography and security techniques have been around
for quite some time, emerging technologies, such as ubiquitous computing and
ambient intelligence that exploit increasingly interconnected networks, mobility
and personalization, put new requirements on privacy and security with respect
to data management. As data are accessible anytime anywhere, according to
these new concepts, it becomes much easier to get unauthorized data access.
As another consequence, the use of new technologies has brought some privacy
concerns. It becomes simpler to collect, store, and search personal information
and endanger people’s privacy. Therefore, research in the area of secure data
management is of growing importance, attracting the attention of both the data
management and security research communities. The interesting problems range
from traditional topics, such as access control and general database security, via
privacy preserving data mining, to new research directions, such as search on
encrypted data and privacy-enhancing technologies.

This year, the call for papers attracted 29 papers both from universities and
industry. For presentation at the workshop, the Program Committee selected 11
full papers (37% acceptance rate) as well as 4 position papers. These papers are
also collected in this volume, which we hope will serve you as a useful research
and reference material.

The papers in this volume are divided into four major sections. The first
section focuses on access control, which remains an important area. The papers
in this section address conflict resolution, administrative policies, and audit of
access rights. The second section changes slightly the focal point to the more
general topics of database security. The papers in this section deal with dis-
closure control, authentication of query results, intrusion detection, search on
encrypted data, and XML security. The third section focuses on privacy pro-
tection addressing the topics of k-anonymity, spyware, and privacy management
in healthcare. The last section collects four position papers whose topics range
from electronic health record requirement analysis to database privacy issues.

We would like to acknowledge Richard Brinkman, who helped in the technical
preparation of this proceedings.

July 2007 Willem Jonker
Milan Petković

Organization

Workshop Organizers

Willem Jonker (Philips Research/University of Twente, The Netherlands)
Milan Petković (Philips Research, The Netherlands)

Program Committee

Gerrit Bleumer, Francotyp-Postalia, Germany
Ljiljana Branković, University of Newcastle, Australia
Sabrina De Capitani di Vimercati, University of Milan, Italy
Ernesto Damiani, University of Milan, Italy
Eric Diehl, Thomson Research, France
Lee Dong Hoon, Korea university, Korea
Jeroen Doumen, Twente University, The Netherlands
Jan Eloff, University of Pretoria, South Africa
Csilla Farkas, University of South Carolina, USA
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Elena Ferrari, Università degli Studi dell’Insubria, Italy
Simone Fischer-Hübner, Karlstad University, Sweden
Tyrone Grandison, IBM Almaden Research Center, USA
Dieter Gollmann, Technische Universität Hamburg-Harburg, Germany
Ehud Gudes, Ben-Gurion University, Israel
Hakan Hacigumus, IBM Almaden Research Center, USA
Marit Hansen, Independent Centre for Privacy Protection, Germany
Min-Shiang Hwang, National Chung Hsing University, Taiwan
Mizuho Iwaihara, Kyoto University, Japan
Sushil Jajodia George Mason University, USA
Ton Kalker, HP Research, USA
Marc Langheinrich, Institute for Pervasive Computing ETH Zurich, Switzerland
Nguyen Manh Tho, Vienna University of Technology, Austria
Nick Mankovich, Philips Medical Systems, USA
Sharad Mehrotra, University of California at Irvine, USA
Stig Frode Mjlsnes, Norwegian University of Science and Technology, Norway
Eiji Okamoto, University of Tsukuba, Japan
Sylvia Osborn, University of Western Ontario, Canada
Gnther Pernul, University of Regensburg, Germany
Birgit Pfitzmann, IBM Zurich Research Lab, Switzerland
Bart Preneel, KU Leuven, Belgium
Kai Rannenberg, Goethe University Frankfurt, Germany

VIII Organization

Andreas Schaad, SAP Labs, France
Morton Swimmer, IBM Zurich Research Lab, Switzerland
Sheng Zhong, Stevens Institute of Technology, USA

Additional Referees

Ludwig Fuchs, University of Regensburg, Germany
Anna Zych, Twente University, The Netherlands
Lei Zhang, George Mason University, USA

Table of Contents

Access Control

A Unified Conflict Resolution Algorithm . 1
Amir H. Chinaei, Hamid R. Chinaei, and Frank Wm. Tompa

Multi-layer Audit of Access Rights . 18
Birgit Pfitzmann

Refinement for Administrative Policies . 33
M.A.C. Dekker and S. Etalle

Database Security

Authenticating kNN Query Results in Data Publishing 47
Weiwei Cheng and Kian-Lee Tan

Query Rewriting Algorithm Evaluation for XML Security Views 64
Nataliya Rassadko

Answering Queries Based on Imprecision and Uncertainty Trade-Offs
in Numeric Databases . 81

Alexander Brodsky, Lei Zhang, and Sushil Jajodia

Architecture for Data Collection in Database Intrusion Detection
Systems . 96

Xin Jin and Sylvia L. Osborn

Common Secure Index for Conjunctive Keyword-Based Retrieval over
Encrypted Data . 108

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk

Privacy Protection

Generating Microdata with P-Sensitive K-Anonymity Property 124
Traian Marius Truta, Alina Campan, and Paul Meyer

Preventing Privacy-Invasive Software Using Collaborative Reputation
Systems . 142

Martin Boldt, Bengt Carlsson, Tobias Larsson, and Niklas Lindén

Towards Improved Privacy Policy Coverage in Healthcare Using Policy
Refinement . 158

Rafae Bhatti and Tyrone Grandison

X Table of Contents

Positon Papers

Requirements of Secure Storage Systems for Healthcare Records 174
Ragib Hasan, Marianne Winslett, and Radu Sion

An Intrusion Detection System for Detecting Phishing Attacks 181
Hasika Pamunuwa, Duminda Wijesekera, and Csilla Farkas

A Three-Dimensional Conceptual Framework for Database Privacy 193
Josep Domingo-Ferrer

Novel RFID Authentication Schemes for Security Enhancement and
System Efficiency . 203

N.W. Lo and Kuo-Hui Yeh

Author Index . 213

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 1–17, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Conflict Resolution Algorithm

Amir H. Chinaei, Hamid R. Chinaei, and Frank Wm. Tompa

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1, Canada
Tel.: +1 (519) 888-4567 extensions {36612, 33400, 34675}

{ahchinaei,hrchinaei,fwtompa}@uwaterloo.ca

Abstract. While some authorization models support either positive or negative
authorizations, hybrid frameworks take advantage of both authorizations.
Resolving authorization conflicts is quite a challenge due to the existence of
sophisticated inheritance hierarchies and the diversity of ways to combine
resolution policies. Some researchers have addressed conflict resolution for
tree-structured hierarchies, and others have applied a simple conflict resolution
policy. The challenge is to combine several policies and to support
sophisticated structures in one single framework. This paper proposes a unified
framework together with a single parametric algorithm that supports all the
legitimate combinations simultaneously, based on four conflict resolution
policies. We validate our approach by testing the algorithm against both real
data and synthetic examples to provide extensive experimental results.

Keywords: Access Control Models, Hybrid Authorizations, Conflict
Resolution.

1 Introduction

Because individual users can assume several personae (e.g., payroll clerk, member of
the social committee, and occupant on the fourth floor), they may be simultaneously
authorized for some activity and denied authorization for that same activity when
viewed in another role. There exist several conflict resolution policies, such as “denial
takes precedence” and “the most specific authorization takes precedence,” in the
literature of access control models. However, combining the policies provides a
variety of different comprehensive conflict resolution strategies, which have not been
well addressed. Designers of access control models typically choose a specific
approach to conflict resolution and incorporate a hardwired conflict resolution method
within their models. Consequently, if an enterprise subsequently decides to choose an
alternative conflict resolution strategy, the whole system has to be replaced.
Maintaining separate software for multiple strategies is expensive for software
providers. We propose one single parameterized algorithm by which security
administrators can invoke a chosen strategy, among many, without needing to
reinstall the whole system.

2 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

1.1 Motivating Example

Figure 1 illustrates a subject inheritance hierarchy including nine subjects. The arrows
represent group membership (e.g., subjects S4 and S5 are members of subject/group S3)
and the sign labels represent explicit authorizations (+ indicates positive authorization
and – represents denial). For simplicity of exposition, we assume that access to an
object is either granted or denied (rather than separately controlling reading, writing,
and other operators), and we illustrate only authorizations for a single object. The
figure shows that subjects S2 and S4 are explicitly authorized to access the object,
whereas subject S5 is explicitly denied from accessing it.

S1 S2
+

S3

S4
+

S5
-

S6

User

S7

S8

Fig. 1. An example of the subject hierarchy

Given the data in Figure 1, assume we are interested in knowing whether or not
subject User is authorized to access the object. One may interpret the data to mean
that the object is accessible to subject User since User is a descendant of S2 and
thereby inherits S2’s authorizations. However, another may argue that the object
should not be accessible to User since he is a member of S5 which is denied access. In
fact, there is a conflict in the system. Conflict resolution policies are needed to answer
such questions.

Adopting one simple policy, such as “the most specific authorization takes
precedence,” is not sufficient in practice. For instance, such a policy is insufficient
where the subject hierarchy is more complex than tree-based structures and therefore,
a subject may have more than one “most specific” authorization. For example, in
Figure 1, neither S2 nor S5 is more specific to User, with respect to the other, since
both of them are at the minimum distance of 1 from User. Furthermore, there are
situations in which the highest authority (not the most specific one) should be the
final arbiter. For instance, assume a student is authorized by the university athletic
office to referee hockey games on campus (which requires more than 20 hours per
week for several weeks); however, he is required by the department not to accept
heavy non-departmental tasks (in order to comply with his full-time registration
status). In such a case, the university administration may resolve the conflict by
deciding to let him to referee for a limited time. To visualize such a case, assume
there is an edge from S1 to S2 in Figure 1 and S1 is labeled positively. Representing the
student by User, the referees group by S2, the members of the department by S5, and
the university members by S1, it is apparent that for this enterprise the most global
authorization should take precedence in resolving the conflict.

 A Unified Conflict Resolution Algorithm 3

Some have proposed the “negative takes precedence” policy, but this too is not
universally acceptable. For instance, conflicts often are resolved by the “majority
takes precedence” rule in voting systems. Additionally, the open policy recommends a
default positive authorization for subjects which are not explicitly permitted to access
a particular object [6, 10]. Therefore, there are applications in which “positive takes
precedence.”

Even from these simple examples we see that it is required to combine various
conflict resolution policies to obtain a comprehensive conflict resolution framework
that supports several strategies simultaneously. Moreover, each policy may
encompass several variants, and consequently many strategy instances are possible.
What are all the legitimate strategy instances? Is there a unified algorithm to support
all instances parametrically?

Chinaei and Zhang addressed the first question by providing a conflict resolution
framework in which 32 legitimate instances are supported [2]. In that same paper,
they proposed the Dominance() algorithm for one of the compound conflict resolution
strategies and provided some guidelines to extend the algorithm to other strategies.
However, designing a single parameterized conflict resolution algorithm to support all
combined strategies remained open.

In this paper, we first extend the framework to support 16 additional strategy
instances. Thereafter, we present a unified parametric algorithm that supports the
comprehensive conflict resolution framework for hybrid authorization models in
which the subject hierarchy is a directed acyclic graph.

1.2 Outline

Section 2 reviews four major conflict resolution policies and consequent combined
strategies as presented in Chinaei and Zhang’s work [2], and extends the framework
to support 48 strategy instances. Section 3 describes our unified parametric algorithm
and justifies how the algorithm supports all the instances. Section 4 presents our
experimental results. Section 5 reviews the literature. Finally, Section 6 summarizes
our contributions and addresses several future directions.

2 Conflict Resolution Models

Before proceeding, we assume the reader is familiar with the following terminology.
Access control data can be viewed conceptually as being represented by an access
control matrix, where the rows represent subjects, the columns represent objects, and
authorizations are stored at the intersections [10]. However, not every subject-object
pair has explicit rights assigned. Instead, access control for subject/object pairs with
no explicit rights must be derived by other means, e.g. through inheritance via the
subject hierarchy.

We therefore distinguish between an effective access control matrix, which
represents all explicit and derived authorizations, and an explicit access control
matrix, which represents explicit authorizations only. Given an explicit matrix,
conflict resolution strategies are used to fill in all derived authorizations to determine
the effective matrix. It is important to note that the explicit matrix is typically very

4 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

sparse in practice and that the effective matrix is by definition completely filled;
therefore practical systems will store the explicit matrix and compute access control
authorizations as needed by executing a conflict resolution algorithm on an
appropriately extracted subset of that matrix.

Chinaei and Zhang outlined four main policies included in their conflict resolution
framework: preferred authorization, locality (or globalization), majority, and default
authorization [2]. These policies have been articulated by other researchers and
appear in various real world applications, but they are typically discussed
independently and not in combination. In Section 2.1, we restate each policy briefly
and independently of other policies, as well as providing some examples of their
applicability. Then, in Section 2.2 we explain how legitimate combinations of these
policies lead us to define several consequent strategy instances.

2.1 Conflict Resolution Policies

Our model assumes that the subjects for whom authorizations are to be determined are
structured as a directed acyclic graph. Individuals are represented as sink nodes; a
group of individuals is represented by a node with outgoing edges to each member of
the group; a group of groups is represented by a node with outgoing edges to each
subgroup member of that group. In general, a group can have zero or more subgroups
and zero or more individual nodes. We do not restrict the subject hierarchy to form
a tree.

All authorizations of a group may be applicable to a member of that group. As
illustrated in Section 1, propagating explicit authorizations to derive effective
authorizations of the group members may cause conflicts. Access control must
determine for each subject/object/operation whether the subject is to be allowed to
execute the operation on the object or denied such execution. Conflict resolution is
required when propagating authorizations results in no decision for a particular
subject/object/operation triple or when both positive and negative authorizations can
be derived for that triple. Here, we outline popular conflict resolution policies that we
include in our model.

Preference Policy. Preferred authorization (with one of two modes: either positive or
negative) is determined by the system installer at configuration time. This policy
determines which authorization wins when both positive and negative authorizations
(or neither negative nor positive authorization) can be derived for a particular subject.
Negative authorization is preferred (known as closed policy) in more restricted
systems such as military; positive authorization may be preferred in more open
applications such as public information systems.

Locality Policy. The common mode of this distance-based policy states that the most
specific authorization takes precedence. It applies to distributed organizations whose
local branches may recognize an exception to a general rule. For instance, a
department in a university may admit an outstanding applicant although the general
admission requirement is not completely met. Thus, for a given subject, when both
positive and negative authorizations can be derived from different ancestors, the one
that is closer to the subject wins. Note that the distance between two nodes (subjects)
in a directed acyclic graph is measured by computing the shortest directed path.

 A Unified Conflict Resolution Algorithm 5

The locality policy is not deterministic since no authorization wins when the distances
are equal.

As an alternative for the locality policy, some enterprises might choose “globality”,
where the most general authorization takes precedence. One application of this policy
is in distributed organizations whose headquarters makes the final decision on a pre-
approved task by a local office. For instance, a supreme court may override the
appealed decision. For a given subject, when both positive and negative
authorizations can be derived from different ancestors, the one that is farther from the
subject wins. Similar to the usual locality policy, globality is not deterministic since
no authorization may win.

Majority Policy. This policy states that the conflict can be resolved based on votes,
and the authorization that has the majority wins. The application of this policy is in
situations where several parties have different opinions for giving or not giving the
authorization to a particular member and the decision is made by votes. For instance,
GATT’s current members vote to determine if a new application can get into the
group. By applying this policy, the dominant authorization takes precedence. This
policy is also non-deterministic since it can result in a tie.

Default Policy. This policy is applied only to root nodes for which no authorization
has been defined. Closed systems, such as in the military, require negative
authorization by default; however, open systems, such as public information
applications, initially allow any subject to enjoy a positive authorization. This policy
is deterministic and has two modes (default positive or default negative), but applies
to root nodes only. Note that for non-root nodes only the preference policy is
deterministic.

2.2 Combined Strategies

Figure 2 illustrates five conflict resolution strategies presented in Chinaei and Zhang’s
work [2], based on combining the popular conflict resolution policies summarized in
Section 2.1. They are given the mnemonics DLP, DLMP, DP, DMLP, and DMP, in
which D, L, M, and P indicate Default, Locality, Majority, and Preference policies,
respectively. Two properties are guaranteed: first, none of the policies are redundant,
and second, there is no conflict after applying the last step. Note that in this
framework the Default and Preference policies are always the first and the last
applicable policies, respectively, and the other two policies, Locality and Majority,
are optional.

Chinaei and Zhang state that because the Default, Locality, and Preference policies
can take two modes each, there are 32 different strategies instances in total that can be
derived from Figure 2 [2]. (Paths ending with a, b, and d generate eight instances
each, and paths ending with c and e generate four instances each.)

We recognize that there are also applications in which the default policy is not
appropriate. For instance, in determining whether S3 is authorized access according to
Figure 1, we may wish to give priority to the explicit authorization on S2 regardless of
whether the value assigned to S1 is positive or negative. This can be accomplished in
general by omitting the default policy, using locality or majority as desired to arbitrate
a value for S3 and using the preferred authorization to assign a value to S1 only
afterwards.

6 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

Default

Locality

Majority

Preference

Majority

Locality

a

b
c

d

e

Fig 2. Combined conflict resolution strategies

Therefore, to achieve a comprehensive framework, we augment the combined
strategies illustrated in Figure 2 with making the default policy optional as well. This
results in five more combined strategies namely LP, LMP, P, MLP, and MP. Hence,
the framework supports 16 more instances; strategies LP, LMP, and MLP generate
four instances each, and strategies P and MP generate two instances each.

Note that no other combined strategy can be meaningfully composed from these
basic conflict resolution policies. For example, the preference policy cannot be
optional and must be considered last, since it is the only policy that is well-defined on
every node.

3 Implementation

This section describes an algorithm that propagates explicit authorizations through the
subject hierarchy, and resolves the possible conflicts based on any of the 48 strategy
instances illustrated in Section 2. In particular, Section 3.1 describes details of our
conflict resolution algorithm (called Resolve()). After that, Section 3.2 describes the
propagation of explicit authorizations.

To determine whether a given object, oj, is effectively accessible to a given subject,
Si, with respect to a given right, rk, the idea is to apply the following four-step
procedure:

Step 1: Consider the maximal sub-graph (called H) of the subject hierarchy in which
Si is the sole sink and all other nodes are its ancestors.
Step 2: Assign a letter “d” to all root subjects in H that are unlabeled with respect to
object oj and right rk.

Figure 3 illustrates the result of Steps 1 and 2 for subject User, object obj, and right
read, illustrated in Figure 1 as the motivating example.
Step 3: Propagate all authorization labels down every path to subject User and store
the distance of each propagated authorization from its source node to its destination
node (User). For instance, the distance of label - (on S5) to node User is 1; also, there
are two distances for label “d” (on S6) to node User: one (with value 1) directly from
S6 to User, and one (with value 2) via S5.

Table 1 illustrates the result of authorization propagation for subject User, object
obj, and right read as represented by Figure 3.

 A Unified Conflict Resolution Algorithm 7

S1 S2
+

S5
-

User

S6
d

S3

Fig. 3. Sub-graph of subject User

Table 1. All read authorizations of User on obj

subject object right dis mode

User obj read 1 -
User obj read 1 d
User obj read 2 d
User obj read 1 +
User obj read 3 +
User obj read 3 d

Table 2. Resolved authorization for each combined strategy

strategy mode strategy mode strategy mode strategy mode

D+LMP+ + D+LP+ + LMP+ + D+MLP+ +

D+LMP- + D+LP- - LMP- - D+MLP- +

D-LMP+ - D-LP+ + GMP+ + D-MLP+ -

D-LMP- - D-LP- - GMP- + D-MLP- -

D+GMP+ + D+GP+ + MP+ + D+MGP+ +

D+GMP- + D+GP- + MP- + D+MGP- +

D-GMP+ + D-GP+ + LP+ + D-MGP+ -

D-GMP- - D-GP- - LP- - D-MGP- -

D+MP+ + D+P+ + GP+ + MLP+ +

D+MP- + D+P- - GP- + MLP- +

D-MP+ - D-P+ + P+ + MGP+ +

D-MP- - D-P- - P- - MGP- +

Step 4: Apply a particular conflict resolution strategy to resolve any conflicts and
derive a final effective authorization for the triple <Si, oj, rk>.

Table 2 illustrates the result of applying each of the 48 strategy instances
(explained in Section 2) to Table 1. For example, D+LMP+ is the strategy instance in
which first the default policy is applied and every root subject which is null is
initialized to +; then, if there is a conflict, the Locality policy (“the most specific
authorization takes precedence”) is applied; then if there is still a conflict, the
Majority policy is applied; and finally, if the conflict is not resolved, the preference
policy in which the positive (+) authorization takes precedence is applied. Let’s see
what the result of this strategy instance is on Table 1: by applying the default policy
D+, all mode d’s are replaced by +; by applying the locality policy, the conflict is not
resolved since there are conflicting modes + and - from the shortest distance 1;
however, by applying the majority rule, mode + wins over mode - since there are
more + entries than - entries. Note that the preference policy is not applicable to this
case since the conflict is resolved before this rule is triggered; however in other
hierarchies the conflict need not yet have been resolved.

8 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

For each strategy instance in Table 2, we use a bold font to show which policy has
determined the effective authorization when applied to our example. For example, in
the last strategy instance, MGP-, by applying the first policy (Majority), the positive
authorization wins since there are two +’s (rows 4 and 5) as opposed to only one –
(row 1) in Table 1. Therefore, the localization and preference policies of the MGP-
instance are not applicable to this case.

3.1 Algorithm Resolve()

This section defines our conflict resolution algorithm. Figure 4 illustrates Algorithm
Resolve() which computes the derived authorization mode of a given subject with
respect to a given object and right. The algorithm parameters are s, o, r, dRule, lRule,
mRule, and pRule; and the result is either + or -. Parameters s, o, and r designate a
particular subject, object, and right, respectively, on which the caller is interested to
know whether or not the object is accessible to the subject with respect to the
specified right. Parameters dRule, lRule, mRule, and pRule determine the conflict
resolution strategy based on which the final right of the subject on the object must be
derived. In particular, parameter dRule represents the default policy and takes either
of the three values “+”, “-”, or “0”, which respectively states that the unlabelled root
ancestors of the subject are to be initialized to positive authorization, negative
authorization, or remain null (no default policy). Parameter lRule represents the
locality policy; its value is either min(), max(), or identity(), which represent “the most
specific authorization takes precedence, ” “the most general authorization takes
precedence, ” or “no locality policy” modes, respectively. Parameter mRule takes
three values before, after, or skip, which determines whether the majority policy is
applied before the locality policy, after it, or not at all, respectively. Finally,
parameter pRule represents the preference policy and determines whether positive or
negative authorization is preferred in the case of remaining conflicts. (We assume that
the subject hierarchy (SDAG) and the explicit access control matrix (EACM) are
globally defined in the algorithm.)

In Line 1, relation allRights is created by calling Function Propagate(). The details
of this function are explained in the next section, but the effect is to apply the first
three steps of the procedure described in the introduction to Section 3. An instance of
relation allRights is illustrated in Table 1, where all the rights of subject User on
object obj with respect to authorization read are depicted.

In Line 2, we check whether the caller is interested in applying the default
authorization policy (dRule = “+” or “-“) or not (dRule = “0”). In the latter case, only
those rows of relation allRights are considered in which mode <> “d”. In the former
case (Line 3), those rows of relation allRights in which mode=“d” are updated with
the value of dRule (“+” if positive authorization is to be the default policy, “-”
otherwise).

In Line 4, if the majority policy should be applied before the locality policy, we
count the number of positive authorizations and negative authorizations that exist in
relation allRights; however, as stated in Line 5, if the majority policy should be
applied after the locality policy, we first apply the locality on relation allRights, and
then count the number of positive and negative authorizations. In either of these cases
(Line 6), the algorithm returns the authorization which is in majority.

 A Unified Conflict Resolution Algorithm 9

Algorithm Resolve(s, o, r, dRule, lRule, mRule, pRule)
¤ To check whether subject s has a positive or a negative authorization for right r on object o
¤ Default rule dRule ∈ {“+”, “-”, “0”}
¤ Locality rule lRule ∈ {max(), min(), identity()}
¤ Majority rule mRule ∈ {“before”, “after”, “skip”}
¤ Preference rule pRule ∈ {“+”, “-”}
¤ SDAG (subject hierarchy) and EACM (explicit access control matrix) are globally defined.

Output: either “+” or “-”

1. allRights ← Propagate (s, o, r, SDAG, EACM);
2. if dRule = “0” allRights ← allRights

mode "d"<>

σ

3. else update allRights set mode=dRule where mode=“d”;

4. if mRule = “before” {c1 ← ⎟
⎠
⎞⎜

⎝
⎛

Π
+=

allRights
modecount ""()

σ ; c2 ← ⎟
⎠
⎞⎜

⎝
⎛

Π
−=

allRights
modecount ""()

σ }

5. if mRule = “after” {c1 ←

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Π

=

+=

allRights

dislRuledis
modecount

)(
,""()

σ ;c2 ←

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Π

=

−=

allRights

dislRuledis
modecount

)(
,""()

σ }

6. if mRule <> “skip” { if c1 > c2 return “+”; if c2 > c1 return “-”; }

7. Auth ← ⎟
⎠
⎞

⎜
⎝
⎛

Π
=

allRights
dislRuledismode)(

σ ;

8. if count(Auth) = 1 return Auth;
9. return pRule;

Fig. 4. Algorithm Resolve ()

If neither positive nor negative labels is in the majority or the majority policy is not
designated at all, we apply the locality policy to relation allRights to select its relevant
rows (Line 7); if lRule = min(), only rows in which the value of column dis is equal to
the minimum distance (the most specific authorizations) are selected; similarly, if
lRule = max(), only rows in which the value of column dis is equal to the maximum
distance (the most general authorizations) are selected; however, if lRule=identity(),
all rows are selected (this is equivalent to no locality policy being designated).

Next, the values of column mode of corresponding rows are projected to form a set
called Auth, which may be empty or contain positive and negative authorizations. If
only one type of authorization is present (Line 8), it is returned; otherwise, the
preferred authorization (pRule) is returned and the algorithm ends.

Table 3 illustrates the result of Algorithm Resolve() applied to our motivating
example for several illustrative strategies. In particular, we trace the algorithm for
eight strategy instances (selected from Table 2) namely D+LMP+, D-GMP-, D-MP-, D-

LP+, D+GP-, P-, GMP-, and MGP-. Table 3 shows values of c1, c2, Auth, and the
effective mode derived by the algorithm, as well as its corresponding return line
number. In the table, n/a means that the algorithm does not use the corresponding
variable for the conflict resolution.

10 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

For instance, if one chooses the strategy instance D-GMP-, all default values of
relation allRights are replaced with “-” (Line 3). Since the global mode of the locality
policy is in place and there are one positive and one negative authorization from
distance 3 in Table 1, both c1 and c2’s values are assigned the value 1 (Lines 5). Then,
since neither positive nor negative is in majority, the algorithm continues to Line 7,
and Auth is assigned the value {+,-}. Finally, since there is a conflict in Auth, Line 9
of the algorithm returns the value of preference policy, which is “-“ (indicated by P- in
the strategy instance), as the final derived decision with respect to triple <User,
obj, read>.

As another example, if one chooses strategy instance MGP-, in Line 2, only those
rows of relation allRights in which the mode is not “d” are selected. Then, since the
globalization policy is in place and there is one explicit positive authorization from
distance 3 in relation allRights, the value of c1 is set to 1 and the value of c2 is set to 0
in Lines 4. Finally, the algorithm returns “+” from Line 6 as the final derived decision
with respect to triple <User, obj, read>.

Table 3. Trace of Resolve()

Strategy c1 c2 Auth mode Line
D+LMP+ 2 1 n/a + 6
D-GMP- 1 1 +,- - 9
D-MP- 2 4 n/a - 6
D-LP+ n/a n/a -,+ + 9
D+GP- n/a n/a + + 8
GMP- 1 0 n/a + 6
P- n/a n/a -,+ - 9
MGP- 1 0 n/a + 6

3.2 Function Propagate()

In this section, we explain the details of Function Propagate(), which returns all
corresponding authorizations of a given subject, object, and authorization, shown as
<s, o, r> when called from Line 1 in Algorithm Resolve(). The idea is to extract the
part of the subject hierarchy in which s is the only sink. Then, using top-down
breadth-first propagation, all authorizations from root subjects are propagated towards
s. If a root subject has no authorization assigned in the explicit matrix, a letter “d” is
assigned to it to represent the default authorization. Moreover, the distance of each
authorization to s is computed, so that it can be exploited by Algorithm Resolve() if
the locality policy is applied. Note that authorizations are propagated from all paths
starting from the source node and ending at the destination. For instance, in Figure 3,
authorization + from subject S2 is propagated to subject User along two paths:
S2→User, and S2→S3→S5→User.

Figure 5 illustrates Function Propagate(), which inputs parameters s, o, and r
(representing the subject, object, and authorization on which the conflict should be
resolved), as well as SDAG and EACM, which represent the subject hierarchy and the
explicit access control matrix, respectively.

 A Unified Conflict Resolution Algorithm 11

Function Propagate (s, o, r, SDAG, EACM);
¤ To obtain all authorizations, with respect to triple <s, o, r> by propagating
explicit authorizations in EACM through subject hierarchy SDAG
¤ EACM has attributes <subject, object, right, mode>
¤ SDAG has attributes <subject, child>
¤ ancestors(s) = {s} ∪ {x|∃y <y,s>∈SDAG ∧ x∈ancestors(y)}
Output: table allRights
1. SDAG′ ←

)(
),(

sancestorschild
sancestorssubject

∈

∈

σ SDAG;

2. i = 0;
3. P ←

,i,modepermission
ject,subject,ob

Π (SDAG′
oobject

rpermission
=

= ,
σ EACM);

4. Roots ←
subject

Π SDAG′ -
child
Π SDAG′ -

subject
Π P;

5. P ← P ∪ Roots × {<o, r, i, “d”>};
6. P′ ←

ssubject≠
σ P;

 repeat
7. i = i + 1;
8. P′ ←

modei
permission

objectchild

,
,
,,

Π P′ SDAG′;

9. P ← P ∪ P′ ;
10. P′ ←

ssubject≠
σ P′;

11. until P′ = ∅ ;
12. return

ssubject=
σ P;

Fig. 5. Function Propagate()

In Line 1, we extract from SDAG the maximal connected sub-hierarchy SDAG’, in
which s is the sole sink. In our motivating example, this line extracts the hierarchy
depicted in Figure 3 from the hierarchy depicted in Figure 1. We set the initial depth
of the iteration to 0.

In Line 3, we create a relation P, which consists of five columns namely, subject,
object, right, dis, and mode. Values for columns subject, object, right, and mode are
taken from the corresponding ones in relation EACM (as explained in Section 1).
Column dis represents the distance of the explicit authorization from the subject, and
takes its value from the iteration number i. Thus, the dis value for explicit
authorizations is 0, for an authorization inherited from a parent it is 1, and for an
authorization inherited from a grandparent it is 2. The first two lines of Table 4 show
the result of Line 3 on our motivating example. Before completing the Function
Propagate(), relation P will record all relevant authorizations propagated from all
subjects to all other nodes.

In Line 4, we store all unlabelled root subjects of SDAG’ into a relation called
Roots. For instance, Roots contains {S1, S6} if applied to our motivating example. In

12 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

Line 5, for each root subject with no explicit authorization with respect to o and r, we
insert an additional row into relation P to assign it the default authorization. This
results in the third and fourth entries in Table 4. In Line 6, we select as P′ all
identified authorizations other than those on the sink node s.

In Lines 7 to 11, we iteratively propagate all of the newly identified authorizations
to all of the children of the corresponding nodes, stopping when no more nodes exist
in P′. This involves increasing the distance by 1 (Line 7), copying the authorizations
from each node to its children (with the increased distance) (Line 8), inserting the new
authorizations into P (Line 9), and re-determining which authorizations still need to
be propagated further (Line 10). The remainder of Table 4 shows the result of these
lines on our motivating example. Finally, Line 12 selects and returns authorizations
that correspond to subject s, which are shown in Table 1 for our example.

Table 4. All read authorizations on obj

subject object right dis mode
S2 obj read 0 +
S5 obj read 0 -
S1 obj read 0 d
S6 obj read 0 d
User obj read 1 +
S3 obj read 1 +
User obj read 1 -
S3 obj read 1 d
User obj read 1 d
S5 obj read 1 d
S5 obj read 2 +
S5 obj read 2 d
User obj read 2 d
User obj read 3 +
User obj read 3 d

3.3 Computational Analysis

The performance of Algorithm Resolve() depends on the structure of the subject
hierarchy, on the placement of the explicit authorizations in the explicit access control
matrix, and on the choice of subject, object, and right. We will examine the
performance in practice in the next section, but here we summarize its asymptotic
behavior in the worst case.

Consider first the structure of the subject hierarchy as represented by SDAG. Let r
be the number of roots of the graph and let n be the total number of subjects in the
hierarchy. We assume that at most one authorization is explicitly given for every
subject-object-right triple; duplicates are meaningless and contradicting authorizations
can be assumed to be disallowed. Thus, when selected subjects from SDAG are
matched with explicit authorizations for a given object and right (Line 3 of Function
Propagate()), at most one explicit authorization is joined to each subject in the subject
hierarchy. Let p be the number of subjects assigned explicit authorizations for the

 A Unified Conflict Resolution Algorithm 13

given object-right pair. Finally, let d be the sum of the path lengths for all paths leading
from a root or an explicitly authorized subject to the given subject of interest s.

Algorithm Resolve() first calls Function Propagate(). Lines 1 through 6 take time
O(n) to select a subset of the subjects, attach the explicit authorizations, and set the
defaults in the remaining roots. Each authorization (default or explicit) is then pushed
down each path to the node representing the given subject. The loop from Lines 7
though 11 of Function Propagate() thus require O(d) time in total. Finally relation P
contains all these propagated authorizations, but only those associated with the given
subject s are returned; this returned relation includes exactly one tuple for each
explicit authorization and at most one tuple for each root. In summary, Function
Propagate() takes time O(n+d) and returns a structure of size O(p+r).

The remainder of Algorithm Resolve() repeatedly examines subsets of the relation
allRights, and thus each line requires time at most O(p+r). Thus the total time for
executing Algorithm Resolve() is O(p+r+n+d). Clearly p+r is O(n), so the complexity
can be stated more simply as O(n+d). Unfortunately, since the number of paths in a
directed acyclic graph can grow exponentially in the number of nodes in the graph, d
is O(n2n) in the worst case. We shall see that in practice, however, the algorithm is
typically much better behaved, as subject hierarchies seldom contain the repeated
diamond patterns that cause the number of paths to explode.

4 Experiments

We tested our algorithm first on synthetic data. We constructed several random
complete directed acyclic graphs. In particular, KDAG(n) includes n nodes, one of

which is a root and one of which is a sink, and ⎟
⎠
⎞⎜

⎝
⎛ n

2
edges (an edge between every pair

of nodes), directed in such a way as to prevent cycles. Thus such graphs contain many
more paths than would be expected in typical applications, and constitute good stress
tests for the algorithm.

We executed our algorithm on random KDAGs of three different sizes. For each
graph, we assigned explicit authorizations to subjects at random, choosing subjects
proportionally to the number of members. In particular, 0.5% to 10.0% of the graph’s
edges were selected at random and their source nodes were assigned explicit
authorizations. We then measured the CPU time for computing the result of the
Function Propagate() (that being the dominant part of the algorithm) for each of the
resulting SDAG-EACM pairs, and averaged over 20 random repetitions with the same
parameters. Our experiments show that for small authorization rates (which often
occur in practical cases), the running time is linearly proportional to the authorization
rates (see Figure 6).

We also evaluated our algorithm on the subject hierarchy extracted from an
installation of Livelink, Open Text’s enterprise content management system1. In
Livelink, groups can be arbitrarily structured and nested to arbitrary depth. In the
environment we tested, the subject hierarchy has over 8000 nodes and 22,000 edges.
There are 1582 sinks (individual users), each of which represents a real-world sample
for our experiments. The depths of the induced sub-graphs range from 1 to 11.

1 http://www.opentext.com/

14 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

We measured the time of our algorithm for each of the sinks in the Livelink subject
hierarchy, using an authorization rate of 0.7% of the edges as above. The results are
presented in Figure 7(a), plotting the CPU time as a function of d, the sum of the
lengths of all paths from explicit and default authorizations to the selected sink.

Figure 7(a) also compares the execution time of the Resolve() algorithm to that of
the Dominance() algorithm, presented in Chinaei and Zhang’s work [2]. The latter
algorithm was designed to evaluate the D-LP- strategy as efficiently as possible under
the assumption that there are relatively few explicit authorizations (i.e., that the
authorization rate is low). Thus the comparison sheds some light on the overhead
imposed by adopting a unified conflict resolution algorithm. It is important to note
that the Dominance() algorithm is dependent on the placement of negative
authorizations whereas the Resolve() algorithm is not. To account for this, we
calculated the average of three trials for each data point for the Dominance()
algorithm: one where 1% of the explicit authorizations are negative, one where half of
them are negative, and one where all explicit authorizations are negative.

The Dominance() algorithm is occasionally very fast due to visiting an early
negative authorization in the hierarchy, but it is not as efficient as Resolve() for
objects that have few negative authorizations. Figure 7(a) shows that the run time for
the Dominance() algorithm can fall anywhere below the time for the Resolve()
algorithm, and occasionally it can be higher. On average, over all graph sizes and
shapes in these experiments, Resolve() required 1260 ms to compute whether or not a
sink subject was authorized to access an object, whereas the Dominance() average is
920 ms. Thus the flexibility to compute the value for any strategy comes at a cost of
27% overhead.

Finally, Figure 7(b) restates the behavior of Algorithm Resolve() against the
number of nodes in the sub-graph rather than the total length of all paths in the sub-
graph. The results show that graphs with very many subjects do not necessarily
require much more time to resolve than do small graphs. From this data we conclude
that it is unlikely that the asymptotic worst case performance will be problematic in
practice.

0

100

200

300

400

500

600

700

0.5% 1.5% 2.5% 3.5% 4.5% 5.5% 6.5% 7.5% 8.5% 9.5%

authorization rate

tim e (m s)

KDAG(15)

KDAG(10
)

KDAG(20)

Fig. 6. Function Propagate() on synthetic data

 A Unified Conflict Resolution Algorithm 15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50 3650 7250 10850 14450 18050 21650 25250

total paths length

tim e (m s)

Dominance for DLP

Resolve Algorithm

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500
num ber of nodes

tim e (m s)

Fig. 7(a). Algorithms Resolve() and
Dominance() on Livelink data

Fig. 7(b). Total paths lengths vs. number
of nodes

5 Related Work

Bertino et al. propose an authorization mechanism for relational models in which
conflicts are mainly resolved based on “the negative authorization takes precedence”
policy [1]. They also introduce the concept of weak and strong authorizations, which
is equivalent to using our combined strategy instance D-LP-.

Jajodia et al. use Datalog programs to model access controls of hybrid
authorizations with a wide range of conflict prevention/resolving policies [7]. Their
modeling stores the raw authorizations and computes the effective authorizations for a
<subject, object> pair in time linear to the size of the Datalog program (rules and
ground facts). However, their ground facts include the transitive closure of the subject
hierarchy (which cannot be computed in linear time) plus all the raw authorizations.
The potentially large number of ground facts implies that even a linear time solution
may not be efficient in practice. To answer access control queries efficiently, they
suggest materializing the entire effective access control. The accessibility check for a
given <subject, object> pair is thus equivalent to checking the materialized effective
access control table (constant time). However, considering the formidable size of the
effective access controls, which is the product of the number of objects and the
number of subjects, this approach is not practical for very large systems. Moreover,
the materialized effective access controls are not self-maintainable with respect to
updating the explicit authorizations, and even a slight update to the explicit
authorizations could trigger a drastic modification to the effective ones, making the
maintenance task very expensive.

Some existing solutions for computing effective authorizations assume that the
explicit authorizations are propagated on tree-structured data [4, 12, 14, 15]. This
trivializes conflict resolution since there is only one path between any ancestor and a
leaf. Moreover, the number of ancestors for a leaf is bounded by the depth of the tree,
which is usually a small value in real world data [11]. Unfortunately, real world
subject hierarchies are mostly DAG-structured rather than trees: the UNIX file system
allows a user to be member of several groups at the same time, and in role-based
access control systems, a user can be assigned several roles and each role can be
assigned to multiple parent roles [5]. When explicit authorizations are propagated on a

16 A.H. Chinaei, H.R. Chinaei, and F.W. Tompa

DAG subject hierarchy, a sink subject potentially has all subjects as its ancestors, and
each ancestor may have several paths reaching to that sink. Therefore, none of the
approaches for tree-structured data are appropriate in this setting.

Cuppens et al. propose a conflict resolution model for documents containing
sensitive information [3]. They address the problem of downgrading the classification
of these documents when their contents become obsolete. Their approach is to impose
a strict order of preference between rules and does not include any hierarchy among
subjects.

Koch et al. provide a systematic graph-based conflict detection and resolution
algorithm based on two properties namely, rule reduction and rule expansion [9].
Using these properties, they transform a conflicting graph into a conflict-free one.
However, their approach is applicable only to the rules that are related to one another,
whereas our approach addresses independent policies.

Finally, our approach is also different from the combining algorithms in XACML
[12], in which the resolution model relies on the data hierarchy rather than the subject
hierarchy.

6 Conclusions

In this work, we have extended Chinaei and Zhang’s conflict resolution framework
for hybrid authorizations, by investigating legitimate combinations of a variety of
popular conflict resolution policies. Our framework includes a variety of resolution
models to support both closed and open systems, as well as both restricted and relaxed
applications. Most importantly, we have enhanced this framework with a unified
parameterized algorithm in which a wide range of combined strategy instances are
simultaneously supported. This framework inspires access control system providers to
separate the conflict resolution component from the system itself. With such an
approach, system buyers no longer need to replace the whole system when they
decide to change the access control policy. Instead, security administrators can trigger
a chosen strategy, among many, without needing to reinstall the whole system.
Moreover, access control system providers can sell the same system to all users,
regardless of their specific access control needs.

We have experimented with different sets of data layouts. Our pilot experiments
show that our algorithm incurs little overhead and performs well when the explicit
authorization rate is below 10%, which is appropriate for most practical applications.

We propose several directions to continue this work. First, since there are many
nodes in the subject hierarchy that are ancestors of several sinks, it would
significantly improve the performance of the algorithm if the derived authorizations
of such nodes stored in a cache for later uses. Second, in this work we exploit the
subject hierarchy only. It is important to support mixed hierarchy of subjects and
objects. Third, our framework can be augmented to support three different
propagation modes: when propagating an authorization along a path and meeting
another authorization on that path, either the first, the second, or both authorizations
could be propagated further. Fourth, we suggest to enhance the framework by adding
other access control constraints such as separation of duties and conflict of interests
[8, 13]. Lastly, it is interesting to optimize the Resolve() algorithm for special
purposes of covering a smaller subset of combined strategies for applications in which
performance is more important than complete flexibility.

 A Unified Conflict Resolution Algorithm 17

Acknowledgments

We gratefully acknowledge the Natural Sciences and Engineering Research Council
of Canada, Communications and Information Technology Ontario, Open Text
Corporation, the Mathematics of Information Technology and Complex Systems, and
the University of Waterloo for their financial support.

References

1. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization for relational data
management systems. ACM Transactions on Information Systems 17(2), 101–140 (1999)

2. Chinaei, A.H., Zhang, H.: Hybrid authorizations and conflict resolution. In: Jonker, W.,
Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 131–145. Springer, Heidelberg
(2006)

3. Cuppens, F., Cholvy, L., Saurel, C., Carrere, J.: Merging Security Policies: Analysis of a
Practical Example. In: Proceedings of the 11th Computer Security Foundations Workshop,
pp. 123–136 (1998)

4. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-grained
access control system for XML documents. ACM Transaction on Information and System
Security 5(2), 169–202 (2002)

5. Ferraiolo, D.F., Kuhn, D.R.: Role Based Access Control. In: Proceeding of the 15th NIST-
NCST National Computer Security Conference, pp. 554–563 (1992)

6. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communications of ACM 19(8), 461–471 (1976)

7. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible Support for Multiple
Access Control Policies. ACM Transactions on Database Systems 26(2), 214–260 (2001)

8. Joshi, J., Bertino, E., Sahfiq, B., Ghafoor, A.: Dependencies and Separation of Duty
Constraints in GTRBAC. In: Proceeding of the 8th ACM Symposium on Access Control
Models and Technologies (SACMAT ’03), pp. 51–64. ACM Press, New York (2003)

9. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Conflict Detection and Resolution in Access
Control Specifications. In: Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures, pp. 223–237 (2002)

10. Lampson, B.W.: Protection. In: Proceedings of the 5th Annual Princeton Conference on
Information Sciences and Systems, pp. 437–443 (March 1971)

11. Mignet, L., Barbosa, D., Veltri, P.: The XML Web: A First Study. In: Proceedings of the
International World Wide Web Conference, pp. 500–510 (2003)

12. Moses, T.: eXtensible Access Control Markup Language Version 2.0, Technical Report,
OASIS (February 2005)

13. Nyanchama, M., Osborn, S.L.: The Role Graph Model and Conflict of Interest. ACM
Transaction on Information Systems Security 2(1), 3–33 (1999)

14. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Compressed Accessibility
Map: Efficient Access Control for XML. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu,
J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 478–489.
Springer, Heidelberg (2003)

15. Zhang, H., Zhang, N., Salem, K., Zhuo, D.: Compact Access Control Labeling for
Efficient Secure XML Query Evaluation. In: Proceedings of the 2nd International
Workshop on XML Schema and Data Management (2005)

Multi-layer Audit of Access Rights

Birgit Pfitzmann

IBM Zurich Research Lab,
Säumerstr. 4, CH-8803 Rüschlikon, Switzerland

bpf@zurich.ibm.com

Abstract. In the context of regulatory compliance, the question is of-
ten whether an enterprise can guarantee that only certain people can
access certain data or perform certain business functions on them. Ex-
amples are controls over financial data in Sarbanes-Oxley and access to
personal information in privacy laws such as HIPAA and the California
Senate Bill 1386. Such guarantees also have to be strictly audited. For
individual access control systems, such questions are standard at least
in theory. However, to the best of our knowledge such questions have
never been addressed for entire system stacks containing multiple layers
of data representation with potentially different access mechanisms. For
instance, financial data may be accessed by using an access right to the
official financial application, but also by using an administrator right to
an underlying database or by logically or physically accessing an unen-
crypted backup tape with the data. We propose an overall model and
algorithms to deal with this situation. We study both advance queries for
validating a proposed system and a posteriori queries in audit, problem
determination, or litigation.

1 Introduction

In the last few years, new regulations have had a strong impact on security
management in enterprises and posed a number of new challenges in security
implementation, evaluation, and audit. One reason for this profound impact is
the increased punishment for misbehavior, such as personal responsibility of
CEOs in the Sarbanes-Oxley Act and the obligation to personally inform cus-
tomers when an enterprise has lost their personal data in the California Senate
Bill 1386 and subsequent similar regulations in many other US states. A second
reason for the strong impact is that many new laws come much closer to making
technical requirements than older laws. This does not mean that they prescribe a
specific technology such as a specific access control mechanism or cryptographic
algorithm. However, they prescribe that enterprises document the methods they
use, demonstrate the effectiveness of these methods, and support detailed au-
diting. Fulfilling all these requirements for information stored digitally and for
processes carried out with machine assistance is almost impossible without strict
IT security measures.

A specific need that often arises when the higher-level regulatory requirements
are broken down to the IT level is to evaluate who can access what information.

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 18–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-layer Audit of Access Rights 19

For instance, for Sarbanes-Oxley compliance one needs to know who has write
access to financial data. For privacy laws, one needs to know who has read access
to personal information.

At a first glance, this question may seem trivial to answer: Most enterprises
have access control systems in place for most data repositories and applications.
Hence to answer questions about who has access to certain data, one “simply”
looks up the access control policy and analyzes the rights to the information
under consideration. We put “simply” in quotes because with existing tooling
even this is not trivial in many cases. However, we will look one step further:
Usually, the “official” access control system to a certain type of business infor-
mation, such as access control integrated into a workflow or access control to the
database records, is by far not the only path to the information. For instance,
instead of using an official financial application, one may also access financial
data by using an administrator right to an underlying database. Or one might
be able to access an unencrypted backup tape with the data, either logically or
by physically stealing it. To the best of our knowledge, there are no models or
systems in theory or practice for evaluating such overall access control situations.
We provide such models and foundational algorithms on them in this paper.

We call this multi-layer access control or, when auditing existing access rights
is the main issue, multi-layer audit of access rights. We introduce a static model
for the situation, consisting of a base model and a number of extensions that are
needed for certain more complex applications. We also extend this to a dynamic
model, i.e., to cover the evolution of a system over time. Based on these models,
we propose algorithms to answer the typical audit questions. Again, we start
with the static case, where the question is about current access rights, or rather
access rights at any particular point in time for which a static multi-layer access
control model is given. After that, we investigate queries about the past and
the future. Queries about the past come in two flavors: One can ask either who
actually has accessed data, or who could have accessed them. Both questions are
important for auditing purposes, because one may have to report and remediate
a lack in oversight and governance even if nothing bad happened because of it.
Queries about the future are about who could access certain data in the future,
given the knowledge about potential changes in the system and the rights. This
is a multi-layer extension of the well-known safety questions for access rights. We
believe this extension will give rise to significant new work in this space beyond
the start that we take here.

Beyond typical all-or-nothing access control models, our model takes encryp-
tion into account, because in real enterprises, data encryption is currently be-
coming a standard measure to address some of the new regulatory concerns
about data access. Initially, encryption is primarily used for data on tapes and
for data in transit on the Internet, but the use will certainly extend to more
types of data representations in the future. The model extensions we make to
cover encryption also cover other shared protection mechanisms such as 4-eye
principles in the access control system and secret sharing.

20 B. Pfitzmann

Furthermore, our model can not only address integrity and privacy, but also
availability. Availability of certain types of data is also becoming strongly regu-
lated at present under the name of data retention.

Overview of this paper. In Section 2, we review underlying concepts of access con-
trol, and we discuss some concepts whose names sound similar to our multi-layer
access control, but which are something else. In Section 3, we present the new
model that allows us to treat multi-layer access control and audit. We present a
basic static model, extensions to the static model, and models for the dynamic
development of the model over time. In Section 4, we present algorithms for
evaluating access rights over the static model. Section 5 contains algorithms for
evaluating questions about past access rights, first for actual accesses and then
for potential accesses. Section 6 contains algorithms for evaluating questions
about potential future access rights. Section 7 contains proposals for instantiat-
ing a multi-layer access control model for a given real-world enterprise. We finish
with a conclusion in Section 8.

2 Related Work

We start with a short survey of basic work on static and dynamic access control
considerations. We proceed with the closest related work, that on access control
in an interplay of applications or workflows with databases. After that, we men-
tion some existing concepts whose name sounds similar to our multi-layer access
control and audit, e.g., multi-policy systems and multi-level security. However,
these concepts are actually quite different.

Static access control. Access control is one of the oldest topics in security research.
An access control scheme is typically seen as a matrix, often 3-dimensional with di-
mensions called subjects, objects, and actions, and with Boolean values describing
whether access is allowed or not. Such a matrix is a static access control model, de-
scribing the access rights at one point in time. An early paper in this space is [10],
but the concepts probably existed in specific operating systems before. Typically, a
static access control language, such as the UNIX access control rights or the recent
XACML standard,doesnotwriteoutanaccess controlmatrixfieldbyfield,butcon-
tains abbreviations such as user groups or user roles and object hierarchies. There
arealsoother extensions,e.g., 3-valued logicwith“don’t-care”values,additionaldi-
mensions like “purpose” in privacy policies, condition expressions, and post-access
obligations. While we are unable to say for each of these concepts where it was first
proposed, some influential earlypaperswith themare [19,21,23,9,16,11,15].Abook
summarizing many access control models is [7].

Dynamic access control. The seminal paper for dynamic access control theory
is [12]. It introduced the notion of access control commands, small procedures
built from basic access control matrix changes that can only be executed as a
whole. Hence one can consider the possible evolution of access rights. This paper
also introduced the safety problem, which is precisely a query whether a certain

Multi-layer Audit of Access Rights 21

subject may be able to access a certain object in the future. The undecidability
of this problem for general protection systems spawned a large body of research
on restricted systems, i.e., restricted command sets, e.g., [14,22,17].

Access control with databases and applications. Access control with two to three
layers has been considered specifically for the interplay of applications and/or
workflows with underlying databases, e.g., in [20] or industrially in [6]. However,
to the best of our knowledge the questions that have been treated in this context
are quite specific to these two layers, e.g., to what extent database access control
enforcement can be used to mirror dynamic access constraints defined for a
workflow, or how one can find out from a given application what access rights
its individual users needs.

Multi-policy systems. These are systems where one access control enforcement
point, at one level of abstraction, takes several policies into account [13]. Topics
in this context are whether the policies are combined, typically with the Boolean
AND operator, into one policy or whether the access control enforcement point
queries multiple access decision engines. The policies may all be in the same
policy language or in different languages. In the former case, policy algebras are
of particular interest, such as in [5,1].

Federated access control. This means that access control systems under different
domains of control are considered [8]. However, these domains are at the same
level of abstraction, while we consider levels of abstraction. Typical examples
are digital rights management (DRM) and privacy. For instance, in DRM one
may consider an audio file flowing from a producer over a distributor to a media
player. These are three domains of control, and one desires that the distributor
and the media player honor the policy of the producer. Similarly, in privacy
one desires that personal data are only forwarded with the original usage re-
strictions that had been promised to the concerned person by the initial data
collector. Both DRM and privacy are of course also considered outside the name
of federated access control.

Policy hierarchies. This term from [18] refers to policy refinement, originally for
a broader scope of management action policies, of which access control policies
are a very specific case. Refinement specifically for access control has also been
considered in detail in the privacy context in [2].

Multi-level security. This denotes a specific class of access control policies, first
formalized in [3], originating from military applications. The levels have noth-
ing to do with our layers, but are security levels such as “highly confidential”,
“confidential”, and “public”.

Object hierarchies in access control. Finally, there is the standard notion of
object hierarchies in static access control policies. This refers to subject or object
hierarchies at one level of abstraction. For instance, an object hierarchy might
first distinguish patient data into medical versus financial data, and then further

22 B. Pfitzmann

classify medical data into normal medical data versus mental health data, or
data of children versus data of adults. One does not suddenly consider different
abstraction layers such as tapes in such a classification. In particular, access
control algorithms dealing with object hierarchies are designed for being handled
by one access control system, while we deal with a situation where there are
different access control systems at different abstraction layers.

3 Model of Multi-layer Access Control

The main novelty of our model is that we consider a data item not only in one
incarnation (typically the highest available abstraction, such as an application
object or a database entry), protected by one access control system, but in its
different incarnations on the different system layers underlying this abstraction.
We use the term incarnation to cover both a physical version of a data item (e.g.,
two backup copies are two incarnations) and, more importantly, a logical version
on a specific layer of abstraction. For instance, three incarnations of a database
record may be the logical view of it as a database record, the file containing
the database in the operating system, and the blocks on the storage system
that hold this file. This multi-layer view is crucial for real-life access control
and audit because the incarnations are typically managed by different access
control systems, and many real-life security incidents occur because of insufficient
control on the lower layers. Examples are the widely publicized incidents where
enterprises lost tapes with unencrypted personal data, and the current problems
to restrict the administrator rights on systems that hold personal data. The
layers of abstraction that define the incarnations are the typical abstraction
layers of current hardware and software stacks.

In this section, we first present a basic static model for multi-layer access
control, i.e., we first concentrate on one point in time. Then we present extensions
to this static model. Afterwards, we introduce dynamic versions of the model as
needed for later considering queries about the past and the future.

3.1 Basic Static Model: Data-and-Policy Tree

Our core model structure is a graph of incarnations of a piece of data under
consideration. In the simplest case, this graph is a tree:

– The tree root is the top-level data item Dtop about which one might set
an “original” access control policy or get an audit query. For instance, Dtop

may be a financial statement or a set of personal data about one person.
– The children of a node D represent all the incarnations of D on the next

lower abstraction layer.

We call this a data tree. In the static model that we define in this subsection,
the data tree refers to one specific point in time. In principle, Dtop can be
on an arbitrary layer of abstraction. In the motivating examples of regulatory
compliance it is typically a business-level data item.

Multi-layer Audit of Access Rights 23

A data-and-systems tree extends each node D of a data tree by the name S of
the system that includes the access control to this data incarnation D. Thus the
nodes of a data-and-systems tree are pairs (D, S). Only the root Dtop of a data
tree may be without such a system, because the business-level policy or the audit
query may be made at a level of abstraction which is not directly represented by
an actual system. At least for the leaves of a complete data-and-systems tree,
the systems will be physical and not digital.

A data-and-policy tree extends each node (D, S) of a data-and-systems tree
by an access control policy P , representing the access control policy of S at the
considered point in time. Thus a data-and-policy tree has nodes of the form
(D, S, P).1 The policies may be in different policy languages; here we consider
the policy language indication as part of the policy. If S is a physical system, its
access control policy will often not be formalized a priori, but simply realized by
fences, door locks etc. that are only documented informally. However, in principle
these are also access control mechanisms that can be formalized by individual
static access control policies as described in Section 2.

Example. Let our top-level data item Dtop be a check in the financial sense.
Figure 1 shows the data-and-systems tree for this example. In a bank, the check
might be handled in two applications, as a bitmap image in an imaging applica-
tion and as an XML document in a payment business process application. We
call the image Di and the XML document Dx, and the corresponding applica-
tions Imaging and PayProc. This gives us the children of the top-level check
abstraction Dtop . One layer below, the image Di may be handled in a scanner
Scanner and in a long-term database ImgDB . We call these incarnations of the
image Di,1 and Di,2. We assume that the image database is stored on a disk and
on two backup tapes. Hence there are three incarnations of Di,2. We call them
Blocks , Bits1, and Bits2 and the corresponding systems DiskSys and TapeSys ,
assuming that the same tape controller system controls both tapes. Similarly, we
might consider the physical memory of the scanner and multiple incarnations of
the XML document Dx; this is indicated by the symbols “. . . ” in Figure 1.

3.2 Extensions of the Static Model

There are many situations in real life for which one has to extend the basic static
model from Section 3.1, or at least use it in non-standard ways.

Child incarnations with coarser granularity. It is sometimes not easy to precisely
identify the children of a data incarnation D. For instance, when we consider
how the image Di,2 in our check example is stored on the disk, i.e., what the
incarnation Blocks really is, it consist of multiple blocks spread around on the
disk or even on several disks. In such cases, it is sometimes useful not to try
to find precisely the incarnation of D, but instead to consider the next coarser
granularity of data that can be identified and protected individually on this
1 For later query evaluation algorithms, D and P alone would suffice. In practice, the

step via S is important to find P .

24 B. Pfitzmann

(Dtop, -)

(Di, Imaging) (Dx, PayProc)

(Di,1, Scanner) (Di,2, ImgDB)

(Blocks, DiskSys)
(Bits1, TapeSys)

(Bits2, TapeSys)

...

...

Fig. 1. Example of a data-and-systems tree

layer. In the example, this might be an entire disk or disk array instead of only
the blocks corresponding to Di,2.

Multiple systems for one data incarnation. Sometimes multiple access control
systems exist for the same data incarnation. For instance, tapes on a truck on
their way to a backup location may be in a safe, and the truck itself may be
locked. At least in this example, we have a logical AND of the access control
policies of the two systems, i.e., one needs to get into the truck and into the
safe. We can consider the AND of these policies as one policy P , or allow a
multi-policy representation per node in the data-and-policy tree.

Vulnerabilities. Many access control enforcement mechanisms can be broken in
some way. For instance, an operating system may have vulnerabilities that give
an attacker root rights, a physical lock may be physically broken, and logical
systems may be circumvented by social engineering. We can consider this as
conditional access where the breaking is a condition, possibly associated with
the resources needed to perform it. The condition can be considered part of the
policy P for the considered system in the data-and-policy tree, but it may be
clearer to represent vulnerabilities as an OR of the official policy P and the
breaking condition.

Overall user model. It is useful if the subjects of the different access control
policies in a data-and-policy tree all come with mappings to an overall set Users
of users. By “users” we mean real people, because responsibility ultimately lies
with people. It is unlikely in real enterprises that the subject sets of the policies
on different abstraction layers are all originally such a set Users , but the desired
mapping might be given by an identity management system or a metadirectory.
For the data-and-policy tree, one may replace the original subjects in each policy
P by their real-user equivalents, but in practice one needs to consider the original
policy and the mapping (identity management system) separately.

Non-user subjects. In some systems, the access control subjects may not be any
encoding of users from the real user set Users, but applications, transactions,
partner computers etc. For these systems, the mapping of policy subjects to
subsets of Users will need a further hierarchical algorithm over additional infor-
mation about these applications, transactions, or computers. For instance, one

Multi-layer Audit of Access Rights 25

needs to identify the system S′ that contains the access control policy P ′ to the
application A that can access our data incarnation D under consideration.

k-of-n child relationships. Sometimes certain children D1, . . . , Dn of a data in-
carnation D in the data tree do not each individually correspond to D, but only
together. For this case, we define k-of-n child relations. The “n” means that
there are n incarnations, and the “k” denotes how many of them are needed
to provide what one would call “access to D”. For instance, if D is stored in
encrypted form, then the encrypted data D1 and the key D2 form a 2-of-2 struc-
ture of children if “access” means the ability to read. Normal child-relationships
correspond to 1-of-1 structures.

The k-of-n situation may be extended to so-called general access structures,
introduced in [4], where not all sets of data incarnations that provide access to
a data item D are of the same size k.

Goal-dependent trees. The data trees may be different for confidentiality, in-
tegrity, and availability. In our encryption example, if D1 and D2 are the only
incarnations of D on the next lower layer, then destroying one of them is enough
to destroy D. Hence for availability, D1 and D2 constitute two normal 1-of-1 chil-
dren of D, while we saw that they are a 2-of-2 system for confidentiality. (For
integrity, they are also two 1-of-1 children unless the cryptosystem used also pro-
vides authenticity. In that case, the ciphertext D1 is no child at all for integrity,
only the key D2). In particular, for auditing integrity and availability, the data
tree can be pruned at data incarnations that are never written back or inter-
preted as the original, e.g., copies made to log files or data that are not erased
on physical media, while for auditing confidentiality such copies must be consid-
ered.2 Hence in general, we may have a confidentiality data tree, an integrity data
tree, and an availability data tree for the same top-level data item Dtop . If a data
incarnation occurs in more than one of these trees, the corresponding system in
the data-and-system trees will be the same. In the data-and-policy tree one can
either use the same overall policies, or try to separate them according to actions
with read, write, and destroy aspects.

3.3 Dynamic Model for Queries About the Past

So far we designed a model of data incarnations and the corresponding systems
and policies for one point in time. This is sufficient for queries that refer to one
point in time, such as “who can access the check Dtop now?”. However, there
are also other queries. We first consider models for queries about the past, such
as they often occur in audits. There are two ways of modeling the history, which
will typically both be needed in practice:

2 The log files, however, may be top-level data incarnations for integrity on their
own. For instance, to answer the query “who could have changed this bank account
statement” it is irrelevant who could have changed the log file, but the question
“who could have changed the log of this bank account statement” is equally valid.

26 B. Pfitzmann

– Store data trees and actual accesses. This is the history type needed for
queries like “who changed the check Dtop”? The minimum data needed for
this is a list of all accesses (D, s, a, T) where D is the directly accessed data
incarnation, s the accessing subject, a the action performed, and T the data
tree, or set of data trees, to which D belonged at the time of this access.
Typically, additional data will be stored for each access to enable more query
types, in particular the time t of each access, evidence of the access, arising
obligations. Furthermore, one will usually the author and time of each policy
change.

– Store data-and-policy trees. If one also expects questions “who could have
accessed the check Dtop?”, one needs to store all data-and-policy trees that
occurred over time.

3.4 Dynamic Model for Queries About the Future

To evaluate whether a system is well-protected, it is not sufficient to consider the
current access rights via its current data-and-policy tree. The reason is that most
systems do not have one access control policy fixed forever, but certain ways of
changing such a policy. These changes may be controlled by the system itself
or on a different (typically lower) layer. For instance, changes to UNIX access
control policies are protected by the same UNIX access control: File owners can
change file access settings with the command “chmod”, and file ownership is
a notion within the same access control model. Hence UNIX access control is
essentially an instance of the theoretical treatment of dynamic access control as
introduced in [12] and discussed in Section 2. In contrast, if access rights are just
a file of deployment settings, e.g., in a firewall, they are administered separately
by access to that file. In that case, the access control settings of each system S
become an additional data object D with a data-and-policy graph.

Hence in the first case an individual policy P in the data-and-policy tree
is already dynamic and does not need extra treatment. In the second case, an
individual policy P is static and its changes are governed by another data-and-
policy tree in which P is the top element Dtop . Both cases may occur in the
same data-and-policy tree.

Particular operations that must be considered in a multi-layer system beyond
those of standard dynamic access control are the creation and deletion of data
incarnations, i.e., changes to the data tree. The most important operation is
the copy operation on a data incarnation D (possibly on a part of D only). In
a confidentiality data tree, copying creates a sibling D′ to D, and then a new
sub-tree of lower abstractions of D′ has to be created that reflects how D′ is
stored. Another important operation is moving of a data incarnation to another
system (e.g., as in outsourcing or archiving).

We consider changes to a system S itself that may change the accessibility of
data items (for instance, a database schema change) as special cases of access
control policy changes.

Multi-layer Audit of Access Rights 27

Queries about the future like “who could ever manage to change the check
Dtop?” now have to be evaluated by, in principle, considering all potential evo-
lutions of the set of data-and-policy trees.

4 Algorithms for the Static Case

As the main audit query, we consider a query “who can access Dtop” for a
possibly abstract data item Dtop . Very roughly, the corresponding algorithms
work as follows:

– Construct a data-and-policy tree T as defined in Section 3.1 with the root
Dtop .

– Answer the query for individual data incarnations Di in T , yielding subject
sets Ui.

– Combine the individual answers into an overall subject set U according to
the structure of the tree T .

The second step is usually done for each data incarnation Di in T . However,
sometimes one may speed this up by interleaving with the third step.

If T is a normal data-and policy tree without k-of-n child relationships, the
combination step is simply that the set U of subjects who can access Dtop is the
union of all the sets Ui. If I denotes the set of indices of the data incarnations
in T , then in formulas U :=

⋃
i∈I Ui.

We now extend the treatment to trees with k-of-n child relationships in a
bottom-up way.

For a k-of-n node D that has no other k-of-n nodes beneath it, one works
as follows: Given the sets Ui for each child Di (with i = 1, ..., n) of D, a single
subject u can access D if u ∈ Ui for at least k different values of i. A set U of
subjects can access D together if there exist at least k different values of i for
which at least one member of U is also a member of Ui. In formulas this means
that there exists a subset J ⊆ I with |J | ≥ k such that U ∩ Uj �= ∅ for all j ∈ J .
Hence for such a node D we obtain a set U of authorized subsets U , i.e., of sets
U that fulfill the formula we just gave. This is precisely what one calls a general
access structure [4]. Above a k-of-n node in a tree, we therefore continue with
general access structures, not only with individual users who can gain access.

For a normal node with k-of-n nodes underneath, the general access structure
U is computed as follows: A set U can access D iff it can access at least one child
incarnation Di. Thus U is the union of the access structures Ui of the child data
incarnations Di.

For a k-of-n node with k-of-n nodes underneath, a set U can access D if and
only if this set can access at least k child incarnations, i.e., if there exists J ⊆ I
with |J | ≥ k such that U ∈ Uj for all j ∈ J . Thus U is the set of the sets U
fulfilling this formula. This finishes the investigation of all node types.

If we consider goal-dependent trees (see Section 3.2), this same algorithm
may have to be applied to three different concrete data-and-policy trees for one
top-level data item.

28 B. Pfitzmann

5 Algorithms for Queries About the Past

As explained in Section 3, we distinguish queries about actual past accesses and
about potential accesses, i.e., about past access rights.

5.1 Queries About Actual Past Accesses

For queries about actual past accesses, a history of all accesses is necessary and
sufficient.3 This is the first model from Section 3.3.

For the query who accessed data item Dtop one has to consider all data trees
that occur in stored accesses and that contain Dtop . If all these trees are normal
(without k-of-n nodes), the set of users who accessed Dtop is the union of the
sets of users who accessed any node D below Dtop in any of these trees.

For trees with k-of-n nodes, we first consider the case that there is only one
such tree in the considered time period, i.e., the data item Dtop is stored in the
same way all throughout this time period. Then a user u or a user set U accessed
a k-of-n node D iff they accessed k of its children within this time period. For
the access to the children, one proceeds recursively in the same way.

Now we consider that are several trees for Dtop in different sub-periods of the
considered time period. For instance, additional copies might have been made
on some abstraction layers in this time. Then if a certain k-of-n node D remains
the same across several sub-periods, accesses from these two sub-periods must
to be combined. For instance, a person who has read a ciphertext in one sub-
period and the corresponding key in another sub-period has had read access to
the cleartext data item. In other words, we have to proceed node by node with
the algorithm described before, not sub-period by sub-period.

5.2 Queries About Potential Past Accesses

For a query about who could have accessed a data item in the past, a history
of data-and-policy trees is sufficient. This is the second model from Section 3.3.
Then one can in principle use static evaluation for every access right state that
occurred in the time period for which the query is made. In practice, the efficiency
of these evaluations can be improved upon.

6 Algorithms for Future Queries

As described in the introduction, future queries ask who may become able to
access data Dtop , including the changes to the systems and access control policies
that might happen. This is an extension of the classical safety question of access
control theory (see Section 2) to multi-layer systems.

3 The only exception to this necessity is when it is clear that someone accessed the
data and over the entire time, only one person could have done so, but this case
seems rare.

Multi-layer Audit of Access Rights 29

If one keeps the question so simple, there will be many data in current enter-
prises where the answer is “everyone”. The reason is that many data are handled
only with discretionary access controls, i.e., at least their current owner can give
the data to everyone. For instance, the owner of a file in a normal file system
can set world-wide access rights on the file, or send the file to anyone via email.
Hence we refine the question in two steps:

– First, when asking “can a set U of users access data Dtop”, one can consider
only the system changes that the set U can make. This means considering
only the immediate future as far as this user set U can influence things
without help from anyone else.

– Secondly, if one looks further into the future, one should distinguish legiti-
mate and illegitimate changes, in particular for the users not in the set U .
This assumes that there are two different access control and system change
policies (in particular, policies for the passing of data) in one or many sys-
tems: One policy Penf that is actually enforced in the system, and another
policy Phum that has been communicated to the human users outside the
system, e.g., a written guideline “only send medical data by email to other
medical personnel”. The policy Phum might even contain some multi-layer
directives such as “only send medical data by email in encrypted form”.
The refined query then becomes “can a set U of users access data Dtop if
all other users u �∈ U only make changes according to policy Phum”. (The
fact that each system enforces its policy part Penf is implicit in all our
considerations.)

Technically the query types where the users outside the considered set U do ei-
ther arbitrary things or nothing can be regarded as special cases of the last query
type with a policy Phum that allows arbitrary actions or nothing, respectively.

Given such a query, in principle one has to follow the graph G of all possible
developments of the data-and-policy tree for Dtop . Once one has this graph G,
one can answer the static query “who has access to Dtop in T ” for every tree T in
G and form the union of the results (treating k-of-n nodes that occur in several
trees as in the case of past queries). Constructing the graph G works as follows in
principle: One initializes G by a graph with only one node, the original tree Torig .
Then one repeatedly considers each tree T in G that was not considered before
(i.e., one marks each tree as considered or not). For this, one constructs every
possible successor tree T ′ of T under the operations described in Section 3.4
and adds it to the graph G. Finding the successor trees of a tree T is done
by considering every node of the tree and its possible successors. This includes
duplicating or destroying the node or constructing new children of the node.
The algorithm of determining successor systems will not necessarily terminate,
and indeed it is known that even for single-layer systems with rather simple
dynamic access control systems the problem can be undecidable. However, for
audit purposes, if one can not show certain access restrictions, this indicates that
access beyond these restrictions could be possible, and thus the system should
typically be further restricted.

30 B. Pfitzmann

7 Constructing a Data-and-Policy Tree

A core new element of our model is data-and-policy trees, in particular their
data-and-systems tree parts. For auditing in real enterprise applications, these
trees must be derived from existing systems. This is not trivial, but certain
existing enterprise models may help:

– If the enterprise has an explicit data model and if Dtop occurs in this data
model, then follow this data model for the incarnations of Dtop . For instance,
a good data model should state which business data are in which databases.

– If Dtop is an abstract business item that does not occur in an explicit data
model, then use the formal or informal business model to find out how this
business item is instantiated into one or more actual data incarnations D,
and then proceed as in the first bullet.

– Where the data model ends, follow the deployment model. This is the model
about how applications are distributed onto middleware, and middleware
onto systems and finally onto hardware. For instance, a good deployment
model should state on which server a database resides, which disks are used,
and how the backup is done. This is precisely the information needed for the
lower levels of abstraction of a data-and-systems tree.

One should always check that the operating systems and the physical media have
not been forgotten in a constructed data-and-systems tree.

If there is no data model or business model or deployment model, and if it
is impossible from available documentation and knowledge to derive one, one
should try to search for the data with mechanisms like full-text search. In this
case, one may find incarnations at rather low levels, and may have to develop
the higher layers of the data-and-systems tree upwards.

When considering the access control models of all the systems thus obtained,
special roles such as “administrator” always have to be considered besides normal
user roles, although in many systems these roles and their rights are predefined
and do not show up in the explicit access-control policies.

8 Conclusion

We have introduced the concept of multi-layer access control and particularly
of multi-layer audit of access rights. These concepts are key for addressing new
security requirements imposed by legal regulations. Core concepts are data-and-
policy trees containing data incarnations at different abstraction layers with
different policies, and algorithms following those trees and, in the dynamic case,
their evolution. We put special emphasis on allowing k-of-n nodes in the data
trees in order to cover solutions employing encryption and other shared-control
mechanisms whose use (although not very systematic yet) has strongly increased
because of certain new regulatory requirements.

We have concentrated on auditing existing access control policies. An alter-
native approach is to set the policies of all data incarnations in one data tree

Multi-layer Audit of Access Rights 31

according to a desired business-level policy for the top-level data element. Our
model (Section 3) is also needed for this approach, and so are the methods to
construct model instantiations (Section 7). In principle, such an approach is
the end goal of enterprise-wide access control products. However, while such
products are able to use one decision engine, and thus one joint policy set, for
answering access queries of multiple access control enforcement points (e.g., for
web access and Java method calls), we are not aware that this concept has ever
been used with the multi-layer concept of data trees. In the long run, we believe
that multi-layer setting of access policies is superior to only auditing. However, it
requires exclusive write access for the new centralized product to all the policies
of the individual systems, while multi-layer auditing only requires read access.
Thus short- and mid-term, multi-layer auditing is much easier to realize.

References

1. Backes, M., Dürmuth, M., Steinwandt, R.: An algebra for composing enterprise
privacy policies. In: Samarati, P., Ryan, P.Y A, Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 33–52. Springer, Heidelberg (2004)

2. Backes, M., Pfitzmann, B., Schunter, M.: A toolkit for managing enterprise privacy
policies. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 162–180. Springer, Heidelberg (2003)

3. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Technical Report 2547, Volume I, MITRE (1973) Available at:
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf

4. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–36. Springer, Heidel-
berg (1990)

5. Bonatti, P.A., de Capitani di Vimercati, S., Samarati, P.: An algebra for compos-
ing access control policies. ACM Transactions on Information and System Secu-
rity 5(1), 1–35 (2002)

6. Buecker, A., Watanabe, Y.: Design considerations for privacy-preserving database
access. IBM Redbooks Paper (2003), http://publib-b.boulder.ibm.com/
Redbooks.nsf/RedbookAbstracts/redp3720.

7. Castano, S., Fugini, M.G., Martella, G., Samarati, P.: Database Security. ACM
Press, New York (1995)

8. De Capitani di Vimercat, S., Samarati, P.: An authorization model for federated
systems. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS
1996. LNCS, vol. 1146, pp. 99–117. Springer, Heidelberg (1996)

9. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Communications of the ACM 20(7), 504–513 (1977)

10. Dennis, J.B., Horn, E.C.V.: Programming semantics for multiprogrammed compu-
tations. Communications of the ACM 9(3), 143–155 (1966)

11. Fischer-Hübner, S. (ed.): IT-Security and Privacy. LNCS, vol. 1958. Springer, Hei-
delberg (2001)

12. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
munications of the ACM 19(8), 461–471 (1976)

13. Hosmer, H.: The multipolicy paradigm for trusted systems. In: Proc. ACM Work-
shop on New Security Paradigms, pp. 19–32. ACM Press, New York (1993)

http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp3720.
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp3720.

32 B. Pfitzmann

14. Jones, A.K., Lipton, R.J., Snyder, L.: A linear time algorithm for deciding security.
In: Proc. 17th IEEE FOCS, pp. 33–41. IEEE Computer Society Press, Los Alamitos
(1976)

15. Karjoth, G., Schunter, M., Waidner, M.: The Platform for Enterprise Privacy Prac-
tices – privacy-enabled management of customer data. In: Dingledine, R., Syverson,
P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 69–84. Springer, Heidelberg (2003)

16. Kudo, M., Hada, S.: XML document security based on provisional authorization.
In: Proc. 7th ACM CCS, pp. 87–96. ACM Press, New York (2000)

17. Li, N., Tripunitara, M.V.: On safety in discretionary access control. In: Proc. 26th
IEEE Symp. on Security & Privacy, pp. 96–109. IEEE Computer Society Press,
Los Alamitos (2005)

18. Moffett, J.D., Sloman, M.S.: Policy hierarchies for distributed systems manage-
ment. Journal on Selected Areas in Communications 11(9), 1404–1414 (1993)

19. Popek, G.J.: Protection structures. Computer, pp. 22–33 (July 1974)
20. Rits, M., De Boe, B., Schaad, A.: XacT: A bridge between resource management

and access control in multi-layered applications. In: ACM Workshop on Software
Engineering for Secure Systems (SESS ’05), pp. 1–7. ACM, New York (2005)

21. Saltzer, J.H.: Protection and the control of information sharing in Multics. Com-
munications of the ACM 17(7), 388–402 (1974)

22. Sandhu, R.S.: The typed access matrix model. In: Proc. 13th IEEE Symp. on
Security & Privacy, pp. 122–136. IEEE Computer Society Press, Los Alamitos
(2002)

23. Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., Pollack, F.:
HYDRA: The kernel of a multiprocessor operating system. Communications of the
ACM 17, 337–345 (1974)

Refinement for Administrative Policies

M.A.C. Dekker1,2 and S. Etalle2

1 Security group, TNO ICT, The Netherlands
2 Distributed and Embedded Systems group, University of Twente, The Netherlands

Abstract. Flexibility of management is an important requisite for ac-
cess control systems as it allows users to adapt the access control system
in accordance with practical requirements. This paper builds on ear-
lier work where we defined administrative policies for a general class of
RBAC models. We present a formal definition of administrative refine-
ment and we show that there is an ordering for administrative privileges
which yields administrative refinements of policies. We argue (by giving
an example) that this privilege ordering can be very useful in practice,
and we prove that the privilege ordering is tractable.

1 Introduction

Role-based access control (RBAC) [1] is a well-known standard for access con-
trol, aimed to make the assignment of users to privileges more easy. In practice
however, for example in hospitals or enterprises, RBAC policies can be very large
and dynamic, consisting of thousands of roles [6], and changing frequently. In
such cases policy management can be a daunting task. The usual approach to
this problem is to divide the work and to delegate (bits of) administrative au-
thority to other users. The advantage is that users can adapt the access control
policy to changing circumstances more easily, without an administrative bot-
tleneck. Not only does this reduce the cost of maintaining the access control
policy, it also avoids bad security practices, such as sharing passwords or keys
that should really remain secret. For example, it may be convenient to allow the
head nurse to delegate database access to other nurses when they need it for
particular tasks, without having to recur to the hospital’s security officer. On
the other hand, this kind of flexibility also introduces security risks as changes
made to the RBAC policy could entail privacy breaches.

The issue of designing flexible yet safe policy administration mechanisms for
RBAC has received much attention recently [3,4,6,9,14]. To mention some of the
research: In ARBAC [9] administrative privileges are assigned to a separate hier-
archy of administrative roles and defined by specifying a range of roles that can
be changed. Crampton and Loizou [4] take a more general approach, by using the
same hierarchy for both administrative privileges and ordinary user privileges. Us-
ing the concept of administrative scope, they define which roles should have admin-
istrative privileges over other roles. In a similar approach, Wang and Osborn [12]
divide the role-graph (a type of RBAC policy) into administrative domains. Each
administrative domain has one administrator with privileges about the (roles in

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 33–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

34 M.A.C. Dekker and S. Etalle

the) domain. In the Role-Control Center [6], administrative privileges over roles
are defined in terms of views, which are subsets of the role-hierarchy, and they can
only be assigned to users that are assigned to these roles. There seems to be no
consensus (yet) about which administrative privileges belong to which roles; each
of the above mentioned frameworks differs on this issue. Some models motivate
their choice by considerations that include the meaning of a role in a company, or
the concepts of ownership, and responsibility, as one would find it in a company.
On the other hand, Li et al. argue that interpreting the RBAC role hierarchy as a
business organization chart can be misleading [8].

This paper aims to be a contribution to the above-mentioned lines of research
on management of RBAC policies. In this paper we introduce the concept of ad-
ministrative refinement, and we show that this concept yields a more flexible, and
at the same time more safe administrative model. This paper builds on earlier
work [5], where we argued informally that there is a natural ordering for admin-
istrative privileges. In this paper we present a formal definition of administrative
refinement, and we show that it yields an ordering on the administrative privileges,
which allows for a more flexible policy management. Furthermore, we present the
formal proof that this privilege ordering is tractable. Note that in this paper we
do not assume any features that go beyond the General Hierarchical RBAC model
(such as constraints), and that we do not restrict which administrative privileges
can be assigned to which roles. We are hence led to believe that our results are
also applicable to a range of more advanced RBAC models.

2 Preliminaries

We first introduce shortly the General Hierarchical RBAC model, as defined
in the ANSI RBAC standard, because it is the most commonly used RBAC
model [1,6]. In Section 3 we extend this model with administrative privileges,
yielding a general class of administrative policies.

The goal of an RBAC policy is to specify which users are permitted to per-
form which actions on which objects. We denote the sets of users, roles, actions,
and objects, by U , R, A, and O. Permissions for performing actions on ob-
jects are called user privileges, forming a set P ⊆ A × O, e.g. (read , ehrtable),
(print , colorA4).

A non-administrative RBAC policy assigns users to roles, roles to user privi-
leges, and it defines an order on the roles; the role-hierarchy1 .

Definition 1 (Non-administrative Policies). Let U , R, and P be sets of
users, roles, and user privileges, a non-administrative RBAC policy φ is a tuple

φ = (UA,RH ,PA),

1 In the RBAC standard the relation RH is defined to be acyclic, reflexive and tran-
sitive, i.e. it is defined to be a partial order. Li et al., however, showed that this
definition causes problems when changes are made to the role-hierarchy [8]. Here,
for the sake of generality we do not assume that RH is a partial order.

Refinement for Administrative Policies 35

nurse

(prnt,black)

staffdiana

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

Fig. 1. Sample Non-Administrative RBAC policy

where UA ⊆ U × R determines which users are member of which roles, RH ⊆
R × R is the role-hierarchy, and PA ⊆ R × P determines which roles have which
privileges.

The set of non-administrative RBAC policies is denoted ΦU,R,P . To simplify our
exposition we treat a policy φ as a directed graph, defined by the set of directed
edges UA ∪ RH ∪ PA. If there is a path from one vertex v to another v′ we write
v →φ v′. Below we sometimes omit the subscript φ when the policy is clear from
the context.

The RBAC reference monitor uses the policy φ as follows. Any user u can
start a session. The reference monitor allows the user to activate a role r in a
session iff u →φ r. The privileges of the user’s session are all the privileges p such
that r →φ p for some role r activated in the session. Sessions are an important
safety mechanism, allowing users to apply the principle of least privilege. Here,
for the sake of simplicity we ignore the details about sessions. For details about
sessions we refer the reader to the ANSI RBAC standard [1]. Let us give a simple
example of a non-administrative RBAC policy.

Example 1 (Basic RBAC). Consider the setting of a hospital, where a database
system dbms stores electronic health records in a number of tables t1, t2, t3 etc.
The health records can only be seen or changed by authorized personnel. To
enforce this the system dbms uses the RBAC policy depicted in Figure 1: The
employee Diana can activate the role nurse or the role staff. In the former case
she can read the tables t1 and t2, while in the latter case she can also write the
table t3.

3 Administrative RBAC Policies

The RBAC standard specifies a number of administrative functions and controls,
which can be used by an administrative authority to make policy changes [1].

36 M.A.C. Dekker and S. Etalle

In this paper we express administrative authority in terms of administrative
privileges to model which users (or roles) can make which policy changes. There
are two types of privileges: privileges for making new edges (denoted here by
�), and privileges for removing edges (denoted here by ♦). We assign the ad-
ministrative privileges to roles just like the user privileges are assigned to roles
in standard RBAC. This approach is also advocated in the literature2 and the
intuition behind it is that the RBAC policy can also be used to specify who can
change the RBAC policy [4,12].

Clearly, administrative privileges must be an infinite set, even if we assume
that the sets of users, roles and user privileges are finite. The reason is that
administrative privileges over administrative privileges are also administrative
privileges. For example, consider the privilege to give someone else the privilege
to change the members of a role. The number of administrative levels (the num-
ber of nestings of the � connective to be introduced below) is often restricted
in existing literature (sometimes to one [10] or to two levels [14]). We agree that
in some settings multiple levels of administration are not useful, however, here
we prefer to take a general approach, leaving it up to security officers to choose
which administrative privileges to use in their systems.

We formalize the full set of privileges by defining a grammar that encompasses
both user privileges and administrative privileges.

Definition 2 (Privilege Grammar). Let U , R, P be sets of users, roles and
user privileges, the set of all privileges P †

U,R,P is defined by the following grammar:

p ::= q | �(u, r) | ♦(u, r) | �(r, r′) | ♦(r, r′) | �(r, p) | ♦(r, p).

where u ∈ U , r, r′ ∈ R, and q ∈ P .

Each administrative privilege corresponds to an administrative action in a
straightforward way. For example, the privilege �(u, r) allows to add a member
u to the role r. The privilege ♦(u, r) allows to remove a member u from the role
r. For simplicity we do not model privileges to change the sets U , R, or P , and
we assume that they are chosen sufficiently large and fixed. The rationale is that
changes to U , R, or P do not actually change the policy, rather they change
which policies are well-formed. For example, in practice the set of users could be
chosen to be all strings starting with ’uid’, which is independent of which users
are assigned to roles in the RBAC policy.

As mentioned, � and ♦ are connectives and the set P † is infinite. (Even if U ,
R, P are finite.) For example, one could have an expression �(r,�(u, r′)), which
expresses the privilege to give to role r, the privilege to a user u to the role r′.
We can now define administrative policies.

2 Existing literature focusses however on defining constraints on which roles can have
which administrative privileges. For example, to prevent low roles from obtaining
privileges about higher roles [4]. For the sake of generality we do not make choices
with respect to such constraints.

Refinement for Administrative Policies 37

Definition 3 (Administrative Policies). Let U , R, P be sets of users, roles
and user privileges, an administrative RBAC policy φ is a tuple

φ = (UA, RH , PA†),

where UA ⊆ U × R is a set of user assignments, RH ⊆ R × R a role-hierarchy,
and PA† ⊆ R × P † are the assignments to user or administrtaive privileges.

The set of administrative policies is denoted Φ†
U,R,P , which is a superset of the

policy set ΦU,R,P from standard RBAC (see Definition 1). Administrative poli-
cies allow users to make policy changes. We model this formally by defining
administrative commands.

Definition 4 (Administrative Commands). Let U , R, P , be sets of users,
roles and user privileges, an administrative command is a term

cmd(u, a, v, v′),

where u ∈ U , a ∈ {�,♦} and v, v′ ∈ U ∪ R ∪ P †.
A command queue is a list of administrative commands, denoted cq =
cmd(u, a, v1, v2) : cmd(u′, a′, v′1, v

′
2)..., where : denotes the list constructor.

The set of command queues is denoted CQ . The empty command queue is
denoted ε. The administrative functionality of the RBAC reference monitor is
modeled by a command queue, and an administrative RBAC policy. The RBAC
reference monitor changes the policy by executing administrative commands in
the command queue. We formalize this by a transition function.

Definition 5 (Administrative Transition). Let cq ∈ CQ be a command
queue, and φ ∈ Φ† an administrative policy, the administrative transition func-
tion, denoted ⇒:⇒: CQ × Φ† → CQ × Φ†, is

〈cmd(u,�, v, v′) : cq, φ〉 ⇒ 〈cq , φ ∪ (v, v′)〉, if u →φ r and r →φ �(v, v′).
〈cmd(u,♦, v, v′) : cq, φ〉 ⇒ 〈cq , φ \ (v, v′)〉, if u →φ r and r →φ ♦(v, v′).

〈cmd(. . .) : cq, φ〉 ⇒ 〈cq , φ〉, otherwise.

Note that if an administrative command is not allowed by the policy φ, then
the command is removed from the queue, without changing the policy φ. Below,
a sequence of executions of commands in the queue is called a run, denoted by
⇒∗. We give a brief example by applying this model in a practical situation.

Example 2. Consider the policy in Example 1. Alice, the security officer, wants
to delegate some of her administrative authority to the employees of the Human

38 M.A.C. Dekker and S. Etalle

 (dbusr1, .)

HR

nurse

(prnt,black)

staff

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

 (bob,staff)

 (joe,nurse)

 (joe,nurse)HRSO
dbusr3

Fig. 2. The administrative RBAC policy deployed by Alice, the security officer

Resource department (HR). In this way, members of HR can appoint new staff
members or nurses, without having to recur to Alice each time. To delegate these
administrative privileges, Alice uses an administrative policy.

Figure 2 shows Alice’s policy: Members of HR can assign and revoke certain
users to staff and nurse roles. Additionally, to protect the confidentiality of
health records in the tables t2 and t3 Alice delegated a revocation privilege about
the role dbusr2 to the role dbusr3. The administrative policy hence not only
describes who can access which resources, but also which roles have privileges
to change to the policy.

4 Administrative Refinement

In the previous section we have defined a general class of administrative poli-
cies for the General Hierachical RBAC model. In existing literature [3,4,6,9,14],
the administrative privileges in RBAC policies are treated just like ordinary
user privileges. In this section we show that this is more restrictive than nec-
essary for safety, and that a more flexible approach can be very useful in prac-
tice. This section is organized as follows. First we formalize the notion of ad-
ministrative refinement. In section 4.1 we show that the privilege ordering
for assignment privileges [5] yields administrative refinements of policies,
and in section 4.2 we present the formal proof that the privilege ordering is
decidable.

Refinement for Administrative Policies 39

Ignoring policy changes for the moment, an access control policy ψ is safer
than a policy φ, if ψ grants users to less privileges than φ does. We call this
non-administrative refinement.

Definition 6 (Non-Administrative Refinement). Let φ, ψ ∈ Φ† be two
RBAC policies. We say that ψ is a non-administrative refinement of φ, denoted
φ ψ, iff for any v ∈ U ∪ R and any user privilege p ∈ P , v →ψ p implies
v →φ p.

We give a basic example to illustrate this definition.

Example 3 (Non-Administrative Refinement). Consider the policy depicted in
Figure 1. Clearly, by removing any of the edges in the policy one obtains a
refinement of the policy. For example, by removing Diana from the staff role.
There is a more fine-grained type of refinement that rearranges edges. For ex-
ample, if we replace the edge between Diana and staff with an edge between
Diana and nurse, then we have another refinement of the policy. On the other
hand, if we replace the edge between nurse and dbusr1 with an edge between
nurse and dbusr2, we do not obtain a refinement, as nurses get more privileges.

We can now define administrative refinement. The goal of an administrative
policy is to allow certain policy changes. Basically, an administrative refinement
of a policy is a policy that allows safer policy changes. Note that a policy change
made by one user may allow other users to make new policy changes, and so on.
Therefore, to determine the possible policy changes that are allowed, we must
take into account which users are performing administrative actions, and in
which order3. We formalize administrative refinement as follows.

Definition 7 (Administrative Refinement). Let φ, ψ ∈ Φ† be administrative
RBAC policies. We say that ψ is an administrative refinement of φ, denoted
φ † ψ, if, for any queue of administrative commands cq ∈ CQ, there is a queue
of administrative commands cq ′ ∈ CQ, such that φ′ ψ′, where 〈cq, φ〉 ⇒∗

〈ε, φ′〉, and 〈cq ′, ψ〉 ⇒∗ 〈ε, ψ′〉, and cq ′ is such that, it contains the same number
of commands, and the n-th command in cq and the n-th command in cq ′ are
both of the form cmd(u, ., .), where n ranges over the number of commands in the
queue cq.

Basically the definition states that, if ψ allows a certain policy change then either
the same policy change is also allowed by the policy φ, or it is a policy change
that results in a safer policy. It is easy to see that administrative refinement
implies non-administrative refinement; take cq = cq ′ = ε. In other words, if
φ † ψ holds then also φ ψ holds.

3 Taking into account the order is more precise than in the HRU model [7] where it is
assumed that there is a group of untrusted users who can collude in any order, which
does not allow to distinguish the policy lowrole → �(r, p) from highrole → �(r, p)
(but the latter is more safe).

40 M.A.C. Dekker and S. Etalle

4.1 Ordering Administrative Privileges

In this section, we introduce first a privilege ordering on administrative privi-
leges [5] and we show that the ordering of the administrative privileges yields
administrative refinements of a policy. At the end of this section we show how
the privilege ordering can be used in practice to allow more flexible policy
management.

Consider a simple setting where a sub-administrator has the explicit right to
assign a user u to a high role in the role-hierarchy. There is no reason to forbid
the sub-administrator to assign the user to a lower role. This can be seen as
follows. If u becomes a member of the high role, then u can activate also the
lower roles and obtain their privileges, as if u was assigned to it explicitly. In
existing RBAC literature administrative privileges are not interpreted in this
way. The ordering of privileges, just described here, can be defined formally as
follows.

Definition 8 (Privilege Ordering). Let φ ∈ Φ† be an administrative policy,
let p, p1, p2 be privileges in P †, and let v1, v2, v3, v4 be users (U) or roles (R).
We define the relation �φ as the smallest relation satisfying:

p�φ p (1)

�(v2, v3)�φ �(v1, v4), if v1 →φ v2 and v3 →φ v4. (2)

�(v2, p1)�φ �(v1, p2), if v1 →φ v2 and p1 �φ p2. (3)

The ordering�φ is both reflexive and transitive. In practice the privilege order-
ing can be used to allow users, with administrative privileges, to be implicitly
authorized for weaker administrative privileges.

It can be shown (see the Theorem 1 below) that by replacing an adminis-
trative privilege by a weaker one (with respect to the ordering), one obtains an
administrative refinement of the policy. In other words, giving administrative
users also the weaker administrative privileges allows them to perform also safer
administrative operations than the ones originally allowed.

Theorem 1. Let φ ∈ Φ† be an administrative policy, let (r, p) ∈ φ be a privilege
assignment, and let q be a privilege such that p �φ q, then the policy ψ =
(φ \ (r, p)) ∪ (r, q) is an administrative refinement of φ, that is φ † ψ.

Proof. (Sketch) The proof is by case analysis over the different cases in
definition 8.
The first case is trivial, since the relation † is reflexive. For the second case
take a policy φ with privilege assignment (r,�(v2, v3)), and v1 →φ v2, and
v3 →φ v4. Let ψ be the same policy where this privilege assignment is replaced
by (r,�(v1, v4)). So φ allows the command

cmd(u,�, v2, v3),

Refinement for Administrative Policies 41

which changes φ to φ′ = φ ∪ (v2, v3), while ψ allows the command

cmd(u,�, v1, v4),

which changes ψ to ψ′ = ψ ∪ (v2, v3). To show that φ † ψ it is sufficient to
show that φ′ ψ: In ψ′ v1 has the privileges of v4, but in φ′ v1 has the same
privileges, due to the edges v1 →φ v2, v3 →φ v4 and v2 → v3.

For the third case take a policy φ with privilege assignment (r,�(v2, p1)),
and v1 →φ v2, and p1 �φ p2. Let ψ be the same policy where this privilege
assignment is replaced by the weaker privilege (r,�(v1, p2)). So φ allows the
command

cmd(u,�, v2, p1),

which changes φ to φ′ = φ ∪ (v2, p1), while ψ allows the command

cmd(u,�, v1, p2),

which changes ψ to ψ′ = ψ ∪ (v1, p2). In case p1 is a user privilege, p1 equals
p2 and the proof is the same as for the second case. We simply show that ψ′

is a non-administrative refinement of φ′. On the other hand, if p1 is an admin-
istrative privilege we must show that the subsequent commands allowed by ψ′

yield refinements of the policies created by commands allowed by φ′. This can
be shown by induction over the structure (the number of nestings of �) of p1.

Let us now give an example of how the privilege ordering can be used in a
practical situation.

Example 4 (A Flexworker). Consider the administrative RBAC policy depicted
in Figure 2. The role HR has the administrative privilege to add new members
to the staff role. There is also a role below staff called nurse, with additional
privileges. Bob is a flexworker, Jane is from the HR department.

Bob arrives at the hospital and his job is to put some order in the health record
database. To do the job he needs to have dbusr2 privileges. Jane a member of
the role HR can give the necessary clearance to Bob. Jane can give Bob staff
privileges (the dashed edge in Figure 3). If she does so, then she must urge Bob
to apply the principle of least privilege, by activating only the role dbusr2, and
not e.g. the staff or the nurse role, which would yield excessive privileges, for
instance medical privileges. But Jane can only hope that Bob does so.

The privilege ordering implies that Jane can assign Bob directly to the dbusr2
role (the dotted edge in Figure 3) because of her privilege to add Bob to the staff
role. In a way, instead of preaching the principle of least privilege to Bob, Jane
applies it for him.

Remark 1 (Less privileges, safer policies). In this paper we have defined a policy
to be safer when the policy gives users less privileges. The principle of least
privilege, and the way it is supported by the RBAC session mechanism, is a
well-known example of the usefulness of this definition. One could perhaps argue
that there could be practical situations where having less privileges is not more

42 M.A.C. Dekker and S. Etalle

mayRevoke(dbusr1, .)

nurse

(prnt,black)

staff

prntusr

(prnt,color)

dbusr1

dbusr2

(t2,read)

(t1,read)

(t3,write)

bob
dbusr3

Fig. 3. A practical example of the use of administrative refinement

safe. For example one could imagine a privilege to append to a log file. Removing
this privilege could cause programs to run unsafely, that is without writing logs.
We believe however that such peculiarities should be resolved at the application
layer. For example by changing the program so that it halts when no logs can
be written.

4.2 Tractability

In this section we address an important practical issue. We prove that the or-
dering relation (Definition 8) is tractable. Since the full set P of privileges is
infinite, this result is not immediate. For instance, a naive forward search does
not necessarily terminate (see the example at the end of this section). The proof
indicates how a decision algorithm, deciding which privileges are to be given to
which roles, can be implemented at an RBAC reference monitor.

Lemma 1 (Decidability of the Ordering Relation). Let φ ∈ Φ† be an
administrative policy, and p, q ∈ P † be two privileges, it is decidable whether
p�φ q.

Proof. The proof is by structural induction over q.
The base cases are when q is not of the form �(r, r′). We show that for the

three base cases p�φ q is decidable:

– Either q is a user privilege from P . In this case p �φ q holds only when
p = q (see rule (1) in Definition 8).

– Or q is of the form �(v, v′) for some v, v′ ∈ U ∪ R, in which case only rule
(2) needs to be checked, which has finite premises.

For the induction step, suppose that q is �(r′, p′), for some role r′ and privilege
p′. Now, p � q can only hold if the premises of rule (3) hold. The premises of

Refinement for Administrative Policies 43

rule (3) are decidable, either because they are finite, or because the induction
hypothesis is applicable (in p′ � q′, q′ is structurally smaller than q, regardless
of p′).

Let us show how the proof above can be used in practice, as a procedure for
checking whether one privilege is weaker than another.
Example 5. Consider Example 4 again. Can Jane assign Bob to the dbusr2 role?
We have to check that the role staff inherits the privilege �(bob, dbusr2). Us-
ing the first part of Definition 8, one finds that the staff role has the privilege
�(bob, staff). Now we should decide whether

�(bob, staff)� �(bob, dbusr2).

This follows trivially from the first rule of Definition 8.
To give a more involved example, suppose that the system administrator Alice

has the privilege �(staff ,�(bob, staff)). Can Charlie give to staff, the privilege
�(bob, dbusr2) directly? We have to check whether

�(staff ,�(bob, staff))� �(staff ,�(bob, dbusr2)).

This is indeed the case by using rule (3) first, and then rule (2).
Now, for the sake of exposition, let us remove the edge between the staff

and the dbusr2 role. Let us show how to determine that the previous relation
does not hold: Now only rule (3) applies, in which case we must decide whether
�(bob, staff) � �(bob, dbusr2). This is a base case of the induction described
in the proof of Lemma 1: Only rule (2) remains to be checked and than we can
conclude that it does not hold.

It could be useful to find all the privileges p′ weaker than a given p. To our
surprise, in some cases the set of all privileges p′ weaker than a given privilege
p, is infinite. Let us give an example.
Example 6 (Infinitely many weaker privileges). Consider a policy where
(r2,�(r1, r2)) ∈ PA. We should stress here that this is by no means an arti-
ficial, or peculiar policy: Members of r2 can make members of r1 member too.

Suppose we are interested in finding all the privileges weaker than �(r1, r2).
The first weaker privilege we discover by applying rule (2) in definition 8:

�(r1,�(r1, r2)).

Using this result in rule (3), we find another weaker privilege,

�(r1,�(r1,�(r1, r2))),

and we can use this again in rule (3), and so on.

Remark 2. The outer nesting in the last term in the previous example is in a sense
redundant. Instead of assigning the privilege �(r1, r2) to r1, one assigns the priv-
ilege to do so, to r1. This only requires the users in role r1 to perform an extra
administrative step, which seems unnecessary. It is cumbersome for the user in
r1, and it does not introduce any safeguards. We conjecture that for all practical
purpose one could stop after n applications of rule (3), where n is the length of
the longest chain in RH . We do not make this observation more formal here.

44 M.A.C. Dekker and S. Etalle

5 Related Work

The problem of administration of an RBAC system was first addressed by
Sandhu et al. [10]. Later, numerous articles have been published extending or im-
proving the administration model proposed there [3,4,6,9,11,13,14]. We discuss
some of them.

Barka et al. [3] distinguish between original and delegated user role assign-
ments. Delegations are modeled using special sets, and different sets are used for
single step and double step delegations (which must remain disjoint). A function
is used to verify if membership to a role can be delegated. Privileges can also be
delegated, provided they are in the special set of delegatable privileges belonging
to the role. In their work, each level of delegation requires the definition of tens
of sets and functions, whereas in our model administrative privileges, of an arbi-
trary complexity, are simply assigned to roles, just like the ordinary privileges.
The PDBM model [14] defines a cascaded delegation. This form of delegation is
also expressible in our grammar (by nesting the � connective). In the PDBM
model, however, each delegation requires the addition of a separate role, which is
cumbersome given the fact that there are already many roles to manage. In our
model the administrative privileges are assigned to roles just like the ordinary
privileges. It is not required to add any additional roles.

A number of proposals define general constraints on the administrative privi-
leges. For example, the constraint that a user must first have a privilege, before
being allowed to delegate it to other users. Note that, as mentioned earlier, in
this paper no particular choice is made with respect to such constraints. Zhang
et al. [13] implement rule based constraints on delegations. They demonstrate
their model using a Prolog program. Basically, they analyze the properties of
a centralized RBAC system, focussing on so-called separation of duty policies.
Crampton [4] defines the concept of administrative scope. Basically a role r is
in the scope of a role r′ if there is no role above r′ that is not below r. They
show how administrative scope can be used to constrain delegations to evolve
in a natural progression in the role hierarchy. Bandman et al. [2] use a general
constraint language to specify constraints on who can receive certain delegations.

6 Conclusion

With this work we make a contribution to the design of flexible administration
models for RBAC. Flexible administration is important to cut the cost of main-
tenance and to enable the RBAC system to adapt to changing circumstances.
In general, the flexibility of management is a very important requisite for access
control systems. Discretionary access control systems are prevalently used (see
for instance Linux, Windows) because users can change the policies about their
files so easily. Mandatory access control systems, on the other hand (such as
RBAC) are deployed to a lesser extent because they are too inflexible. There
are settings where flexibility is required, but discretionary access control is in-
appropriate. A good example is the setting of the protection of electronic health

Refinement for Administrative Policies 45

records. The high availability requirements for health records require flexibility,
and at the same time, policies protecting health records are not at the discretion
of medical personnel creating and using them. RBAC, with a flexible decen-
tralized policy management mechanism could be an interesting solution in such
settings.

The issue of designing flexible yet safe policy administration mechanisms for
RBAC has received much attention recently [3,4,6,9,14]. With this paper we
contribute to these lines of research. We introduce the notion of administrative
refinement of policies, and we show how it can be used to allow more flexible
management of the RBAC policy. Concretely, our contribution is a the defi-
nition of a general class of administrative policies, and a formal definition of
administrative refinement. We have shown that there is a natural ordering for
administrative privileges which yields administrative refinements of policies, and
we have presented the proof that this ordering is tractable. We also showed how
useful our extension is in practice. Our approach allows administrative users
to be implicitly authorized for weaker administrative operations, which is thus
more flexible and more safe as well.

Revocation privileges are included in our model, but we have not identified
(yet) a separate ordering for revocation privileges. We believe that this is an
interesting possibility for further research.

References

1. Standard, R.B.A.C.: ANSI INCITS 359-2004 (2004)
2. Bandmann, O.L., Sadighi Firozabadi, B., Dam, M.: Constrained delegation. In:

Abadi, M., Bellovin, S.M. (eds.) Proc. of the Symp. on Security and Privacy (S&P),
pp. 131–140. IEEE Computer Society Press, Los Alamitos (2002)

3. Barka, E., Sandhu, R.S.: Framework for role-based delegation models. In: Epstein,
J., Notargiacomo, L., Anderson, R. (eds.) Annual Computer Security Applications
Conference (ACSAC), pp. 168–176 (2000)

4. Crampton, J., Loizou, G.: Administrative scope: A foundation for role-based ad-
ministrative models. Transactions on Information System Security (TISSEC) 6(2),
201–231 (2003)

5. Dekker, M.A.C., Cederquist, J., Crampton, J., Etalle, S.: Extended privilege in-
heritance in RBAC. In: Proc. of the Symp. on Information, Computer and Com-
munications Security (ASIACCS), ACM Press, New York (2007) (to be published)

6. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-based Access Control. Com-
puter Security Series. Artech House (2003)

7. Harrison, M.A, Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Co-
munications of the ACM 19(5) (1976)

8. Li, N., Byun, J., Bertino, E.: A critique of the ANSI standard on role based access
control. IEEE Security and Privacy (page in press)

9. Sandhu, R.S., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. Transactions on Information and System Security (TIS-
SEC) 2(1), 105–135 (1999)

10. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

46 M.A.C. Dekker and S. Etalle

11. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method
in RBAC. In: Ferrari, E., Ahn, G. (eds.) Proc. of the Symp. on Access Control
Models and Technologies (SACMAT), pp. 59–66. ACM Press, New York (2005)

12. Wang, H., Osborn, S.L.: An administrative model for role graphs. In: Proc. of the
IFIP TC-11 WG 11, pp. 302–315. Kluwer Academic Publishers, Dordrecht (2003)

13. Zhang, L., Ahn, G., Chu, B.: A rule-based framework for role-based delegation
and revocation. Transactions on Information and System Security (TISSEC) 6(3),
404–441 (2003)

14. Zhang, X., Oh, S., Sandhu, R.S.: PBDM: a flexible delegation model in RBAC. In:
Ferraiolo, D. (ed.) Proc. of the Symp. on Access Control Models and Technologies
(SACMAT), pp. 149–157. ACM Press, New York (2003)

Authenticating kNN Query Results in Data

Publishing

Weiwei Cheng and Kian-Lee Tan

Department of Computer Science
National University of Singapore

{chengwei,tankl}@comp.nus.edu.sg

Abstract. In data publishing model, data owners engage third-party
data publishers to manage their data and process queries on their behalf.
As the publishers may be untrusted or susceptible to attacks, it could
produce incorrect query results. In this paper, we extend the signature-
based mechanism for users to verify that their answers for k nearest
neighbors queries on a multidimensional dataset are complete (i.e. no
qualifying data points are omitted), authentic (i.e. no answer points are
tampered) and minimal (i.e. no non-answer points are returned in the
plain). Essentially, our scheme returns k answer points in the plain, and
a set of (p̃, q)-pairs, where p̃ is the digest of a non-answer point p in the
dataset used to facilitate the signature chaining mechanism to verify the
authenticity of the answer points, and q is a reference point (not in
the dataset) used to verify that p is indeed further away from the query
point than the kth nearest point. We study two instantiations of the
approach - one based on the native data space using space partitioning
method (a.k.a. R-tree) and the other based on the metric space using
iDistance. We conducted an experimental study, and report our findings
here.

1 Introduction

In data publishing model, data owners engage third-party data publishers to
manage their data and process queries on their behalf [6,10]. This model is
applicable to a wide range of computing platforms, including database caching
[8], content delivery network [19], edge computing [9], P2P database [7], etc.

The data publishing model offers several advantages over conventional client-
server architecture where the owner undertakes the processing of user queries.
First, network latency could be reduced by pushing application logic and data
processing from the owner’s data center out to multiple publisher servers sit-
uated near user clusters. Second, it would be cheaper to achieve scalability by
adding publisher servers than fortifying the owner’s data center and provisioning
more bandwidth for every user. Third, the data publishing model removes the
single point of failure in the owner’s data center, hence reducing the database’s
susceptibility to denial of service attacks and improving service availability.

In this paper, our primary concern is the threat that a publisher may return
incorrect query results to the users, whether intentionally or under the influence

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 47–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 W. Cheng and K.-L. Tan

Q

r3

XX

Y

Ymax

min

maxmin

r8

r6

r19

Y

Z

W

X

r20

r18

r17

r16

r15

r14

r13

r12

r11

r10

r9

r7

r5

r4

r1

r2

Fig. 1. A Running Example

of an adversary. An adversary who is cognizant of the data organization in
the publisher server may make logical alterations to the data, thus inducing
incorrect query results. In addition, a compromised publisher server can be made
to return incomplete query results by withholding data intentionally. Therefore
mechanisms for users to verify the completeness as well as authenticity of their
query results are essential for data publishing model. Moreover, it is highly
desirable that only answers are returned in the plain to facilitate confidentiality
and access control.

Several existing works provide for checking the authenticity [11,14] and com-
pleteness [6,13] of query results. However, most of them only deal with one-
dimensional datasets. Devanbu’s scheme [6] handles multiple key attributes by
essentially concatenating them in some preferred order key1|key2|...|keyn; this
scheme is expected to be very inefficient for symmetric queries, such as win-
dow and nearest neighbor queries, that are typical in multi-dimensional context.
In our previous paper [5], we described a partition-based query authentication
mechanism for multi-dimensional database; however, the mechanism is designed
for authenticating results of hyper-rectangle window queries. While this scheme
can be used for kNN queries, it will return more than k points in the plain, and
thus may violate confidentiality and access control policies.

In this paper, we propose a mechanism for users to verify the answer of a
k nearest neighbors (kNN) query on a multi-dimensional dataset. Like existing
works [5,13], our mechanism is based on the signature chain concept, and verifies

Authenticating kNN Query Results in Data Publishing 49

that the k NN answers are complete (i.e. no qualifying data points are omitted),
authentic (i.e. no answer points are tampered) and minimal (i.e. no non-answer
points are returned in the plain). The core of the scheme is to return k answer
points in the plain, and a set of (p̃, q)-pairs, where p̃ is the digest of a non-answer
point p in the dataset used to facilitate the signature chaining mechanism to
verify the authenticity of the answer points, and q is a reference point (not in the
dataset) used to verify that p is indeed further away from the query point than
the kth nearest point. The scheme is minimal since only the k answer points
are revealed in the plain. We study two instantiations of the approach - one
based on the native data space using space partitioning method (a.k.a. R-tree)
and the other based on the metric space using iDistance. We have implemented
both techniques, and our results show that the R-tree-based scheme has better
performance when the number of dimensions is low (d < 8), while iDistance-
based scheme is superior in high-dimensional datasets (d > 8). To our knowledge,
this is the first reported work that addresses this problem.

The remainder of this paper is organized as follows: Section 2 presents some
background and gives an overview of our proposed method. In Sections 3 and
4, we present how to handle kNN queries under the native and metric space
respectively. Section 5 presents results from a performance study. Finally, Section
6 concludes the paper.

2 The Big Picture

The general setting of our problem is as follows. A data owner of a multi-
dimensional dataset DB outsourced the management of DB to a third-party
publisher. Besides DB, (s)he also created one or several associated signatures of
DB that are outsourced together with it. Users are also made aware of certain
meta-data, as well as the public key of the owner. During kNN query processing,
the publisher returns k answers and the associated verification objects (VOs) for
the users to verify the correctness of the answers.

We note that there are other security issues that the data publishing model
poses such as privacy, user authentication and access control. These have been
studied extensively (e.g. [1], [15], [12], [18]), and are orthogonal to our work here.

2.1 Problem Definition

Figure 1 shows a 2-dimensional data space comprising 20 data points, r1 to r20.
The query Q 1 is a 3NN query (i.e., k = 3). As shown, the query answer of this
example is {r5, r8, r9}, where r9 is the 3rd NN (furthest among the 3 answers
from Q). Let dist(x,y) denote the distance between two points x and y. The
circle shown in the figure, whose center is Q and radius dist(Q,r9), is the hyper-
sphere range query of Q. The square, whose center is Q and length 2 ·dist(Q, r9),
is the corresponding most tightly bounded hyper-cube window query of Q.
1 In our discussion, we often overload Q to refer to three related terms: kNN query,

the query point, and the center of the hyper-sphere. The context should be clear
from the text.

50 W. Cheng and K.-L. Tan

To process a kNN query Q, the server performs two tasks. First, it evaluates
Q and returns a result set R. This task is basically the traditional kNN query
processing and hence any kNN query evaluation strategy can be adopted. Second,
it constructs verification objects (VOs) for the result set R. In this paper, we
focus on the problem of constructing VOs that the user will use to verify the
correctness of R.

We note that for kNN queries, the user knows the number of answer points
(which is k). As such, the server must return k points. For the adversary to cheat,
(s)he can (a) tamper with the data (e.g., replace content of point r5); (b) drop a
true kNN point and replace it with a fictitious point (e.g., replace point r5 by the
fictitious point Y within the same hyper-sphere about Q); (c) drop a true kNN
point and replace it with another point that is further away from Q than the kth
NN point (e.g., drop r5 and return r4 expanding the radius of the hyper-sphere
of Q to dist(Q, r4) which is longer than dist(Q, r9)). Cases (a) and (b) can be
easily handled by techniques that verify the authenticity of a point - in fact, our
signature scheme can deal with this easily. The challenge is to handle case (c)
to ensure that the k points returned are indeed the k NN points.

From the user’s perspective, (s)he knows the k answer points in R that are
returned. In addition, (s)he can construct a hyper-sphere about Q whose radius
is dist(Q, z) where z is the kth NN point in R. In this way, we could view the
kNN query authentication problem as the problem to ensure (a) all the k NN
points returned have not been tampered with, and (b) no other points in the
dataset has distance shorter than dist(Q, z).

2.2 Background

Before we present our solutions, there are three important concepts that are
critical to our work. We briefly review them here. We assume a d-dimension
data space. Let L = (L1, L2, . . . , Ld) and U = (U1, U2, . . . , Ud) be two points
that bound the entire d-dimensional data space, where Lr ≤ Ur for all r. L
and U are known to all users. Suppose the space contains N data points p1 =
(x11, x12, . . . , x1d), . . . pN = (xN1, xN2, . . . , xNd).

Signature Chain. Each data point in the database has associated with it a
signature, which is obtained based on the signature chain method [13,5]. Under
the signature chain scheme, the signature of a point is derived from a combination
of the point itself and its left and right neighboring points. Points can be ordered
arbitrarily - this will not affect the correctness of the proposed scheme but the
efficiency. Without loss of generality, we assume that pi is ordered before pj for
1 ≤ i < j ≤ N . Moreover, L is ordered before p1 and U is ordered after pN . Once
the points are ordered, the signature of a point pi, sig(pi), is given as follows:2

sig(pi) = s(h(g(pi−1)|g(pi)|g(pi+1))) (1)

2 For the end points, the bounding points are used in the signature computation. Due
to space constraint, we will not discuss this. See [5] for details.

Authenticating kNN Query Results in Data Publishing 51

where s is a signature function using the owner’s private key (e.g., RSA [17] and
DSA [2]), h and g are one-way hash functions (e.g., MD5 [16] and SHA [3]), and |
denotes concatenation. Referring to our example in Figure 1, points are ordered
based on the x-dimension and so r1 is ordered before r2, which is ordered before
r3 and so on. The signatures of these points are thus “chained” as shown by the
dotted arrow lines. In other words, the signature of r5 is computed from points
r4, r5 and r6.

Collaborative Computation of Digest. The signature of a point is depen-
dent on the use of one-way hash function g used to compute the digest of a point.
In this work, we adopt an iterative one-way hash function of the form [5]:

g(pi) =
d∑

r=1

hUr−xir−1(xir)|hxir−Lr−1(xir) (2)

where hj(xir) = hj−1(h(xir)) and h0(xir) applies a one-way hash function on x.
We note that this iterative hash function facilitates the user and server to

collaboratively determine the digest of a point p. The basic idea is that given a
reference point q known to both the user and the server, the server can partially
compute the digest of p wrt q and then the user completes the computation wrt q.
To illustrate, let a point p = {x1, x2, ..., xd} and another point q = {y1, y2, ..., yd},
such that xi < yi ∀i. Then, instead of returning the digest of p directly, the server
can compute hyi−xi−1(xi) and hxi−Li−1(xi). The user will then derive g(p) using
Equation 2 after applying h on (hyi−xi−1(xi)) an additional of (Ui − yi) times
to get (hUi−xi−1(xi)) ∀i. Now, similar computation can be derived for different
relations between xi and yi.

Hiding Non-Answer Points. The combination of the above two concepts -
signature chain and collaborative computation - provides a very powerful mech-
anism to hide non-answer points, i.e., while the digest of non-answer points can
be returned, their actual values are not known to the user. In this way, the server
cannot tamper with the original digest (since the digest is used in the signature
computation), while the confidentiality of data is preserved and access control is
not violated. As an example, consider three points p, r, t which form a signature
chain. Suppose r and t are answer points while p is not. Moreover, suppose there
is reference point q. Now we can verify that r is correct by verifying that its
signature (returned as a verification object) is correct without returning p in
the plain. This can be done since we can compute the digest of p wrt q collab-
oratively by the server and user, and then compute the signature of r based on
Equation 1. Clearly, if the server attempts to cheat on p, then the user will not
be able to obtain the right digest for p. Thus, non-answer points can be hidden.

Challenges. The key challenge for authenticating kNN queries is to identify
the reference points. In [13,5], the reference points are finite and known - in
[13], the user-specified boundary of a query range has only at most two values
(e.g., return all answers such that 100 < x < 200; here, 100 and 200 are the

52 W. Cheng and K.-L. Tan

boudary points and they are given); in [5], the reference points are the two
bounding points of an MBR which is well defined. For kNN queries, while we
can bound the answers (with the hyper-sphere), we have essentially an infinite
number of boundary points (all points on the hyper-sphere!). Thus, we need
another mechanism to pick and control the number of reference points.

2.3 The Basic Solution

Our proposed solution, in its most basic form, ensures authenticity, complete-
ness, and minimality, and works as follows. Once the server computes the kNN
answers, it returns only the k answers in plaintext. In addition, it also returns
the following verification objects:

– It returns the k signatures of the answer points. These are used to verify
that the data have not been tampered with.

– The k points returned may not fall into a consecutive sequence along the
signature chain. For example, in Figure 1, there is a gap between r5 and
r8. Thus, the server will also need to return the partial computation of the
digests of a number of points that form a chain. Referring to our example
again, we need to return the partial digests of points r3, r4, r6, r7 and
r10. We will defer the discussion on how these points are determined to the
later sections when we present the respective techniques. (It suffices at this
moment to note that we must return r3 to be certain that there is no point
within the hyper-sphere that is chained between r3 and r4.) The user will
then derive the digests of these points to verify the authenticity of the answer
points. For example, by computing the digests of r4 and r6, we can verify if r5

is authentic. Similarly, with the digest of r7, we can verify if r8 is authentic.
Similarly, the digest of r10 is needed to verify the authenticity of r9.

– Now, for the user to verify that the answers are indeed the k answer points,
it need to show that all other points in the chain are outside of the hyper-
sphere centered at Q with radius given by the distance between Q and the
kth answer point. Using our example, the user need to verify that r3, r4, r6,
r7 and r10 are outside of the hyper-sphere. To do this, the server also returns
a set of reference points. Let the number of non-answer points returned be M .
Then, the number of reference points needed is M , one for each of the non-
answer points. These reference points are points in the space but not from the
dataset. Moreover, they are points on or outside of the hyper-sphere surface
so that the distance between these points and Q is larger than the radius of
the hyper-sphere, but shorter than the distance between their corresponding
non-answer points and Q. Note that the server can easily determined these
since the server knows all the points. Using our running example again, r3 has
a reference point X . For each (non-answer point, reference point) pair, the
partial digest of the non-answer point is computed by the server (as described
in Section 2.2), and the user can complete the computation and derive the
actual digest of the non-answer point. As long as the digest is valid, the user
will know that the non-answer point is outside of the hyper-sphere (since it

Authenticating kNN Query Results in Data Publishing 53

knows that the distance between Q and the reference point is larger than
the radius of the hyper-sphere). We will discuss how the reference points
are selected in subsequent sections (since not any arbitrary reference point
works). In addition, we note that we can optimize the number of reference
points returned since it is possible that a number of non-answer points can
use the same reference point. Referring to our example, one reference point
W can be used for both points r6 and r7.

Taking our example in figure 1 again, the query answer for this 3NN query Q is
{r5, r8, r9}. Besides the plaintext for this 3 answers, the server also returns the
following verification objects:

– Signatures of the 3 answer points, which are sig(r5), sig(r8) and sig(r9).
– For the two boundary points r3 and r10 of the answer’s signature chain

returned, the server returns two pairs (r̃3, B1) and (˜r10, B2), where r̃3 and ˜r10

are the partial computation of the digests of r3 and r10 respectively. Points
B1 and B2 are the leftmost and rightmost point of the hyper-sphere query
respectively, where B1.x = Q.x − dist(Q, r9) and B2.x = Q.x + dist(Q, r9).

– For points r4, r6, and r7 that fall into the gap of the answer points along
the consecutive signature chain sequence, the server returns pairs (r̃4, Z),
(r̃6, W), and (r̃7, W) respectively, where r̃i is the partial digest of point ri,
Z and W are the corresponding reference points selected for each ri.

Clearly, the proposed method is minimal since only the k answer points are
returned in the plain!

3 kNN Authentication in Native Space

In this section, we present our solution for authenticating kNN queries in the
native space. We shall adopt the data partitioning approach in our discussion.
Figure 2 shows an example of how the dataset in Figure 1 has been partitioned.
We shall use this figure for illustration.

Given a data space D, let L = (L1, L2, . . . , Ld) and U = (U1, U2, . . . , Ud)
be two points that bound the entire data space, where Li ≤ Ui for all i. L
and U are known to all users. Let Q be a kNN query. We denote the hyper-
sphere formed by the answers of Q as Q(O, r), where O is the center point and
r = dist(O, kth NN answer point) is the radius of the hyper-sphere.

Consider a partition P bounded by two points p0 = (x01, x02, . . . , x0d) and
pn+1 = (x(n+1),1, x(n+1),2, . . . , x(n+1),d) where x0z ≤ x(n+1),z for all z. Suppose
P contains n data points p1 = (x11, x12, . . . , x1d), . . . pn = (xn1, xn2, . . . , xnd).
Without loss of generality, we assume that points are ordered based on increasing
value of the first dimension. Moreover, we assume x11 ≤ x21 ≤ ... ≤ xn1. Thus, pi

is ordered before pj for 1 ≤ i < j ≤ n. Clearly, p0 is ordered before p1 and pn+1

is ordered after pn. In our example, the points in partition R1 are ordered as r1,
r2, r4, while that in partition R4 are ordered as r12, r16, r17. Furthermore, each

54 W. Cheng and K.-L. Tan

r3

r1

X

r9

X

Y

Ymax

min

maxmin

r8

r7

r6

Q

r15
r19

r2

r4

r10

r11

r12

r13

r14

r16

r17

r20

r18

r5
R6

R5

R1

R4R3

R2

Fig. 2. R-tree-based kNN Query Authentication

partition P has a signature derived from its bounding points and the number of
points it contains:

sig(P) = s(h(g(p0)|g(pn+1)|h(n))) (3)

Finally, partitions are also ordered (based on the value of the first dimension),
and signature-chained. Referring to Figure 2, we have R1 ordered/chained before
R2, and so on.

Such an approach facilitates pruning of the space – unlike Figure 1 where
we have to examine 8 points (r3 to r10), as shown in Figure 2, we now need
to examine only the 4 points in partition R2. However, the verification process
becomes more complex and involves two steps now: a) we need to verify that
none of the valid partitions have been missed; b) for partitions that should be
checked, none of the valid points have been missed.

Verifying that the query answer covers all the candidate partitions is straight-
forward for a known hyper-sphere. It comprises the following two phases:

– In the first phase, we need to identify the list of candidate partitions. A
partition is a candidate if the range of the ordering dimension of its MBR
overlaps the range of the ordering dimension of the tightest hyper-cube that
bounds the hyper-sphere. In our example, only partitions R1, R2 and R3 are
candidate partitions.

– In the second phase, some of these candidate partitions can be further
pruned. The ones to be pruned are those whose minimum distance to O is

Authenticating kNN Query Results in Data Publishing 55

larger than the hyper-sphere radius (since no points inside these partitions
will ever be nearer than the kth NN answer point. This can be easily verified
since the bounding points of each partition are known. In our example, R1
and R3 are further pruned.

For each remaining candidate partition P , there are 3 possible relationships
between P and the hyper-sphere Q(O, r):

1. Q(O, r) contains P . In this case, we return all the points in P , i.e., the server
returns p0 to pn+1 and n, together with the respective signatures sig(P0) to
sig(Pn+1) and sig(P). The user would compute the digests for both the
points and the partition to verify the result.

2. P contains Q(O, r). Let Pi = (xi1, xi2, ..., xid), and O = (o1, o2, ..., od). Let
Q′ be the most tightly bounded hyper-cube of Q, thus Q′ is also centered
at point O, and the length of each edge l = 2r. Let Q′’s bounding points be
(ql1, ql2, ..., qld) and (qu1, qu2, ..., qud). Thus, qui = Oi + r and qli = Oi − r for
all i ∈ [1, d]. The data points in P can be separated into
(a) pα, pα+1, ..., pβ−1, pβ, such that xi1 ∈ [ql1, qu1] for α ≤ i ≤ β.

These points can be further categorized into answer points (A) and false
positives (F). For each answer point pi ∈ A, dist(O, Pi) ≤ r, and for
each false positive pi ∈ F , dist(O, Pi) > r. Furthermore, there are two
types of false positive points. In the first type, denoted Fa, for each
pi ∈ Fa, ∃z, xiz /∈ [qlz, quz]. In the second type, denoted Fb, for each
pi ∈ Fb, ∀z, xiz ∈ [qlz, quz]. Note that Fa corresponds to points outside
the hyper-cube, while Fb are points inside the hyper-cube but outside
the hyper-sphere. Let us use the data space in Figure 1 as an example of
a partition containing the hyper-sphere. Here, we have A = {r5, r8, r9},
Fa = {r6, r7} and Fb = {r4}.

(b) p1, ...pα−1, pβ+1, ...pk, which are clearly not answer points. Referring to
Figure 1, these points are r1 to r3 and r10 to r20.

For data points from different categories, the server returns different sets of
verification objects.
(a) For each point pi ∈ A, the server returns pi and sig(pi).
(b) The server also returns p0, pn+1, sig(p0) and sig(pn+1), and sig(P).
(c) For each point pi ∈ Fa ∪ Fb ∪ {pα−1, pβ+1}3, the server finds a reference

point S = (S1, S2, ..., Sd) on the surface of the hyper-sphere4, such that,
if xiz < oz , Sz ∈ (xiz , oz), else if xiz > oz , Sz ∈ (oz , xiz).

3 For points in Fa ∪{pα−1, pβ+1}, we can apply the technique in [5] to verify that these
points are outside the hyper-cube Q′ by treating the hyper-cube Q′ as a window
query. In this case, there is no need to transmit any reference point. However, for
uniformity in discussion, and to keep the presentation simple, we just discuss the
proposed approach.

4 We do not require the point to be on the surface. All that is needed is to find a point
that is outside of the hypersphere that is closer to the query point than the point to
be hidden. However, for ease of presentation, we shall refer to the reference point as
a point on the surface.

56 W. Cheng and K.-L. Tan

We note that the same S point could be used as a reference point for
multiple pis as long as the above conditions hold. For simplicity, we pick
the point closest to the sphere’s surface on the line joining O and pi.
Among these points, we then eliminate “redundant” reference points.
After an S point is chosen for each pi ∈ Fb, we could simply verify that
dist(O, pi) > dist(O, S) ≥ r.
The server then returns several pieces of information together with the
detailed information of point S:
i. if xiz < Sz, hSz−xiz−1(xiz) and hxiz−Lz−1(xiz) are returned.
ii. if xiz > Sz, hUz−xiz−1(xiz) and hxiz−Sz−1(xiz) are returned.

With the above information, the user can compute g(pi) without knowing
the actual value of pi.
– if xiz < Sz, the user applies h on hSz−xiz−1(xiz) an additional (Uz −Sz)

times to get hUz−xiz−1(xiz).
– if xiz > Sz, the user applies h on hxiz−Sz−1(xiz) an additional (Sz −Lz)

times to get hxiz−Lz−1(xiz).
– The user computes g(pi) using Equation 1.

Consider Figure 1 again as our example where P contains Q(O, r). We could
see that the point r7 is outside the hyper-cube, which means that r7 is not
an answer of Q. Instead of just returning the value of r7, the server picks a
reference point W near the circle, where W.x > r7.x and W.y < r7.y. Then
(part of the information) the server returns: for query answers {r8, r9}, it
returns r8, r9, sig(r8), and sig(r9); for r7, it returns (1) hW.x−r7.x−1(r7.x)
and hr7.x−L.x−1(r7.x);(2) hU.y−r7.y−1(r7.y) and hr7.y−W.y−1(r7.y). Here, L
and U denote the two bounding points of the partition. With these, the
user can determine hU.x−r7.x−1(r7.x) and hr7.y−L.y−1(r7.y), and compute
the digest of r7. (S)he can then further verify that r8 is an answer point.

3. P overlaps Q(O, r). This case can be handled by splitting P into two parts:
one overlaps Q′ (the hyper-cube of Q(O, r)), and the other does not overlap
Q′ (which means it does not overlap Q(O, r)). For the first part, we handle it
in the same manner as case (2) above. For the second part, it can be dropped
(except to verify that its points are outside Q′). As such, we shall not go
into the details of this case.

In the above discussion, we have assumed only one layer of partitioning. We can
easily extend the scheme to work with data structures like R-tree, where the data
space is recursively partitioned, with internal nodes covering a larger space. In
this case, all that is needed is to further chain the MBRs of each internal node
to verify that no internal nodes are tampered with and dropped unnecessarily.

4 kNN Authentication in Metric Space

In Section 3, we have looked at how to authenticate kNN queries in the native
data space. In this section, we shall look at the problem when points are stored
in the metric space. Many data structures have been designed for processing

Authenticating kNN Query Results in Data Publishing 57

of B+ tree
Leaf nodes

R3

R2

R1 d2

d1

qr
q

Fig. 3. iDistance based scheme

kNN queries in metric space. We shall discuss the method that is based on the
iDistance [20] scheme here.

iDistance is an efficient technique for kNN search that can be adapted to dif-
ferent data distributions. In iDistance, the data space is partitioned according to
a set of reference points. By indexing the distance of each data point to the ref-
erence point of its partition, high-dimensional points are transformed into points
in a single dimensional space and indexed by a classical B+-tree. In particular,
points in a partition are mapped into a range of values in the single dimensional
space such that no two partitions have overlapping ranges. Thus, all points in
partition Pi is located to the left side of points in partition Pi+1 in the B+-tree.5

Within the same partition, data points are ordered by their distance from the
data point to its reference point. Referring to Figure 3, we have 3 partitions
formed by 3 reference points R1, R2 and R3 respectively. A range query with
center at q and radius r will need to access data points in the shaded region
shown in the figure.

In the iDistance scheme, data partitioning is independent of the spatial lo-
cation of the data points but only related to the selection of reference points.
Moreover, the shape of a partition Pj in the iDistance structure is a hyper-sphere
that is centered at its reference point Oj with radius rPj = max(dist(ri, Oj)).
Let a hyper-sphere query be centered at Q with radius rq. Partition Pj does
not overlap with the query and can be pruned from further consideration if the
following holds:

dist(Q, Oj) ≥ rPj + rq (4)

5 We note that the original iDistance scheme did not discuss how partitions are or-
dered. Here, we adopt a simple strategy that orders the partition based on the values
of the first dimension of the reference point.

58 W. Cheng and K.-L. Tan

On the other hand, if dist(Q, Oj) < rPj + rq, we have to return the detailed
information to show that all the query results contained in this partition are
returned correctly. Now, as reported in [20], the set of points that need to be
examined are bounded by the following inequality

dist(Q, Oj) − rq ≤ dist(Oj , ri) ≤ dist(Q, Oj) + rq (5)

In the authentication model, we build up the signature chain directly on top
of the B+-tree. Let Oj = (Oj1, Oj2, ..., Ojd) be the reference point for partition
Pj . The signature of each data point ri is

sig(ri) = s(g(ri−1)|g(ri)|g(ri+1)) (6)

where g(ri) = h(h(ri)|h(dist(ri, Oj))). Moreover, for each partition Pj ,

sig(Pj) = s(h(Oj)|h(max(dist(ri, Oj)))|h(k)) (7)

where h(Oj) = h(h(Oj1)|h(Oj2)| . . . |h(Ojd)) and k is the number of data points
contained in partition Pj .

Like the R-tree based scheme, authentication of kNN queries for the iDistance
based scheme contains the following two steps: (a) Verify that no overlapped
partitions is missed out; (b) Verify that no result points inside the overlapped
partition is tampered or dropped.

To verify that all overlapped partitions are returned, the publisher need to
return the following information to the client:

– For each partition Pj , return Oj , rPj , k and sig(Pj). With these information,
the client can verify that the partition information has not been tampered
with. Moreover, the client can safely prune away partitions that satisfy Equa-
tion 4 from further verification.

Here, we assume that the client knows the number of partitions; otherwise, ad-
ditional information has to be provided (e.g., the signature for the total number
of partitions, and the number of partitions). We note that this phase can be
optimized by chaining the partitions to minimize the amount of information to
be sent to the client. This is similar to the process of verifying partitions in the
R-tree based scheme.

Now, for each partition Pj that overlaps the query hyper-sphere, we need to
verify that no points has been tampered or dropped. The publisher returns the
following information to facilitate verification:

– The continuous sequence of signature chain within Pj that satify Equation 5.
Since the signatures are ordered by the distance to the reference point, those
points matching the inequality would form a continuous signature chain and
should be returned to the user as verification objects. Since not all points
with the same distance are answer points, this chain of points contain both
answer points A and false positives F . For each point pi ∈ A, the publisher
returns pi and sig(pi). For each point pj ∈ F , the publisher returns a ref-
erence point S = (S1, S2, ..., Sd) on the hyper-sphere (in the native space)

Authenticating kNN Query Results in Data Publishing 59

as well as the corresponding (partial) digest. As in the R-tree based scheme,
different false positive points could share a same reference point S as long as
the following condition holds: if riz < Qz, Sz ∈ (riz , Qz); else Sz ∈ (Qz, riz),
1 ≤ z ≤ d.

– The publisher also returns the (partial) digests of the two points bound-
ing the continuous sequence of signature chain above. Essentially, these two
points allow the client to verify that no other points within the partition has
been dropped. Each of these points is also associated with a reference point.

We note that the verification process is done in the native space. Once the client
receives all the verification objects, it operates in the native space in the same
manner as that described in the R-tree based scheme. In other words, with the
k answer points, it can determine the hyper-sphere query and hyper-cube query.
For each of the non-answer points, the client uses its associated reference point
to verify that it lies outside the hyper-sphere.

5 Performance Study

We have implemented the proposed solutions and conducted a series of experi-
ments to study their performance. For the native space based scheme, we imple-
mented the R*-tree data structure [4]. For the metric space scheme, we employed
the iDistance scheme. The codes for both mechanisms are implemented in C++.
The performance metrics used in our study is the authentication overhead in-
troduced and the I/O access cost. The authentication overhead is computed as
the number of overhead points/k, where the number of overhead points refer
to the number of non-answer points returned.

Unless stated otherwise, we use the following default parameter settings. The
number of dimensions is 4. The data distribution is Gaussian, the number of data
points is 100K, the domain of each dimension is [0, 1M]. The node capacity is 30
(i.e., each node holds up to 30 data points). Queries are generated by randomly
picking a point from the database, and the value of k for the kNN query is 10.
For each experiment, we vary one of the above parameters, run 200 queries, and
take the average score.

5.1 Effect of Number of Dimensions

We first vary the number of dimensions from 2 to 32. Figure 4 summarizes
the result. As expected, a higher dimensionality introduces more overhead for
both mechanisms adopted, as more non-answer points are required to verify the
completeness of the query. Moreover, as the number of dimensions increases,
the data space “expands” correspondingly; with a fixed dataset size, the data
points for higher dimensional dataset are spread more sparsely. Thus, given kNN
queries with the same k value, the radius of the corresponding hyper-sphere in a
higher dimensional dataset is much larger than its radius in a lower dimensional
dataset.

60 W. Cheng and K.-L. Tan

 0

 10

 20

 30

 40

 50

 60

 70

 80

3216842

A
u
th

e
n
e
n
ti

c
a
ti

o
n
 O

v
e
rh

e
a
d

Dimension

233.7

2103.8
R*-tree

I-Distance

Fig. 4. Authentication Overhead on Different Data Dimension

Another observation is that for small number of dimensions, the R*-tree based
mechanism yields lower authentication overhead. However, the iDistance based
mechanism is superior when the number of dimensions is higher. This is reasonable
as R*-tree has its own structural restriction when the dimensionality is high.

5.2 Effect of Different Dataset Size

In our second experiment, we study the effect of different dataset size for a fixed
data space. Figure 5 shows the authentication overhead of the two schemes under
different dataset size.

From the result, we observe that as the dataset size increases, the authenti-
cation overhead for iDistance based method increases as well. However, for the
R*-tree based mechanism, the overhead decreases initially. Our investigation sug-
gests the following reasons - the increasing dataset size reduces the size of the
kNN query, which actually reduces the radius of its corresponding hyper-sphere.
The R*-tree based method is more sensitive to this kind of reduction because of
the overlaps in the MBR of its internal nodes in the structure. However, as the
dataset size increases further, given the fixed data space, the space becomes too
dense, resulting in larger overhead.

5.3 Effect of Different Data Distributions

In this experiment, we study the effect of different data distributions. As shown
in figure 6, the results are measured under three different distribution: Exponen-
tial, Uniform and Gaussian. We note that both methods incur lesser overheads
with the exponential dataset. This is because the data generated under the ex-
ponential distribution are clustered toward one corner (the origin) of the data
space, whereas they are more spread out under the other two distributions.
Moreover, the relative performance of the two methods remains the same for

Authenticating kNN Query Results in Data Publishing 61

 0

 10

 20

 30

 40

 50

 60

 70

100000010000010000

A
u
th

e
n
e
n
ti

c
a
ti

o
n
 O

v
e
rh

e
a
d

Data Set Size

Dimension = 4

R*-tree
I-Distance

(a) d=4

 0

 20

 40

 60

 80

 100

 120

100000010000010000

A
u
th

e
n
e
n
ti

c
a
ti

o
n
 O

v
e
rh

e
a
d

Data Set Size

Dimension = 8

R*-tree
I-Distance

(b) d=8

Fig. 5. Authentication Overhead on different Dataset Size

 0

 10

 20

 30

 40

 50

 60

 70

100000010000010000

A
u
th

e
n
e
n
ti

c
a
ti

o
n
 O

v
e
rh

e
a
d

Data Set Size

Dimension = 4

R*-tree
I-Distance

(a) d=4

 0

 20

 40

 60

 80

 100

 120

100000010000010000

A
u
th

e
n
e
n
ti

c
a
ti

o
n
 O

v
e
rh

e
a
d

Data Set Size

Dimension = 8

R*-tree
I-Distance

(b) d=8

Fig. 6. Authentication Overhead on different Data Distribution

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

3216842

I/
O

 A
c
c
e
s
s

Dimension

R*-tree
I-Distance

Fig. 7. I/O Access Cost

62 W. Cheng and K.-L. Tan

different data distributions. This result is also consistent with the findings in [5]
for multi-dimensional window queries.

5.4 I/O Access Cost

Figure 7 shows the I/O access cost for the two mechanisms at the server. We see
that the R*-tree based method outperforms the iDistance based method when the
number of dimensions is small, while it incurs more I/O cost when the number
of dimensions is large. This is consistent with previous works since the R*-tree
method degenerates in performance as the number of dimensions increases.

6 Conclusion

In this paper, we have introduced a solution for user to verify their answers
for kNN queries. This solution extends the multi-dimensional signature chain
scheme by introducing a positional reference point P for each non-answer point
examined. We studied two schemes, one is based on the R-tree structure and
the other is based on the iDistance structure. Our experimental study showed
that the method based on iDistance structure introduces less overhead and I/O
access over the R-tree method for high dimensionality, while the R-tree based
method is superior when the number of dimensions is small.

Acknowledgements

This work is partially supported by the university research grant R-252-000-
228-112.

References

1. Encrypting File System (EFS) for Windows (2000), http://www.microsoft.com/
windows2000/techinfo/howit works/security/encrypt

2. Proposed Federal Information Processing Standard for Digital Signature Standard
(DSS). Federal Register 56(169), 42980–42982 (1991)

3. Secure Hashing Algorithm. National Institute of Science and Technology. FIPS
180-182 (2001)

4. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD Conference, pp.
322–331 (1990)

5. Cheng, W., Pang, H., Tan, K.: Authenticating multi-dimensional query results
in data publishing. In: Proceedings of the 20th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSec’2006), pp. 60–73 (2006)

6. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic Data Publication
over the Internet. In: 14th IFIP 11.3 Working Conference in Database Security, pp.
102–112 (2000)

7. Huebsch, R., Hellerstein, J., Lanham, N., Loo, B., Shenker, S., Stoica, I.: Querying
the Internet with PIER. In: Proceedings of the 29th International Conference on
Very Large Databases, pp. 321–332 (2003)

http://www.microsoft.com/windows2000/techinfo/howit works/security/encrypt
http://www.microsoft.com/windows2000/techinfo/howit works/security/encrypt

Authenticating kNN Query Results in Data Publishing 63

8. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.,
Naughton, J.: Middle-Tier Database Caching for E-Business. In: Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data, pp.
600–611. ACM Press, New York (2002)

9. Margulius, D.: Apps. on the Edge. InfoWorld, 24(21), (May 2002),
http://www.infoworld.com/article/02/05/23/020527feedgetci 1.html

10. Miklau, G., Suciu, D.: Controlling Access to Published Data Using Cryptography.
In: Proceedings of the 29th International Conference on Very Large Data Bases,
pp. 898–909 (2003)

11. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and Integrity in Out-
sourced Databases. In: Proceedings of the Network and Distributed System Secu-
rity Symposium (February 2004)

12. Neuman, B., Tso, T.: Kerberos: An Authentication Service for Computer Networks.
IEEE Communications Magazine 32(9), 33–38 (1994)

13. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying Completeness of Rela-
tional Query Results in Data Publishing. In: Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data, ACM Press, New York
(2005)

14. Pang, H., Tan, K.: Authenticating Query Results in Edge Computing. In: Con-
ference on Data Engineering, pp. 560–571. IEEE Computer Society Press, Los
Alamitos (2004)

15. Pang, H., Tan, K., Zhou, X.: StegFS: A Steganographic File System. In: Proceed-
ings of the 19th International Conference on Data Engineering, Bangalore, India,
pp. 657–668 (March 2003)

16. Rivest, R.: RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board (1992)

17. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

18. Sandhu, R., Samarati, P.: Access Control: Principles and Practice. IEEE Commu-
nications Magazine 32(9), 40–48 (1994)

19. Saroiu, S., Gummadi, K., Dunn, R., Gribble, S., Levy, H.: An Analysis of Internet
Content Delivery Systems. In: Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pp. 315–327 (2002)

20. Yu, C., Ooi, B., Tan, K., Jagadish, H.: Indexing the distance: An efficient method
to knn processing. In: Proceedings of the 27th International Conference on Very
Large Databases, pp. 421–430 (2001)

http://www.infoworld.com/article/02/05/23/ 020527feedgetci_1.html

Query Rewriting Algorithm Evaluation for XML

Security Views

Nataliya Rassadko

The University of Trento, via Sommarive 14, 38050 Povo(TN), Italy
rassadko@dit.unitn.it

Abstract. We investigate the experimental effectiveness of query rewrit-
ing over XML security views. Our model consists of access control policies
specified over DTDswith XPath expression for data-dependent access con-
trol policies. We provide the notion of security views for characterizing in-
formation accessible to authorized users. This is a transformed (sanitized)
DTD schema that is used by users for query formulation. To avoid the over-
head of view materialization in query answering, these queries later un-
dergo rewriting so that they are valid over the original DTD schema, and
thus the query answer is computed from the originalXMLdata.Weprovide
an algorithm for query rewriting and show its performance compared with
the naive approach, i.e. the approach that requires view materialization.

Keywords: query rewriting, XML views, XPath annotation, algorithm,
evaluation, security.

1 Introduction

Specification of access control models for XML data has been a fairly active
field of research in recent years [5], [6], [7], [10], [12], [13], [14], [16], [17], [19],
[21], [22], [25], [27], [33]. All this previous work (except [14], [22], [27]) enforces
security constraints at the document level by fully annotating the entire XML
document. As a result, one major limitation of these models is the lack of sup-
port for authorized users to query the data: they either do not provide schema
information of the accessible data, or expose the entire original DTD (or its
so-called “loosened” variant). In both cases, the solution is hardly practical for
large and complex documents. Furthermore, fixing the access control policies at
the instance level without providing or computing a schema, makes it difficult
for the security officer to understand how the authorized view of a document for
a user or a class of users will actually look like. On the other side, revelation
of excessive schema information might lead to security breaches: an unautho-
rized user can deduce or infer confidential information via multiple queries and
analysis of the schema even if only the accessible nodes are queried.

To overcome this limitations, the notion of XML security views was initially
proposed by Stoica and Farkas [33] and later refined by Fan et al. [14] and Kuper
et al. [22]. The basic idea is to provide a schema that describes the data that can
be seen by the user, as well as a (hidden) set of XPath expressions that describe
how to compute the data in the view from the original data.

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 64–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Query Rewriting Algorithm Evaluation for XML Security Views 65

In the current paper, we implement and test experimentally the performance
of the security view model of [22]. To this end, we define a rewriting algorithm
that takes a user query over the a security view, and rewrites the query into a
query over the original XML document. We then compare the cost of evaluating
this query with that of evaluating the original query over a materialized view of
the data, and show that significant performance improvements.

The paper is organized as follows. In Sec. 2 we present preliminary notions on
XPath and XML security views. The algorithm of query rewriting is described
shortly in Sec. 3. Evaluation of rewriting algorithm is provided in Sec. 4. The
discussion of related work is located in Sec. 5. Finally, we conclude the paper in
Sec. 6.

2 Background

We first review the fragment of XPath [11] that may be used by a user in query
formulation.

Definition 1. An XPath expression in X is defined by the following grammar:

〈xpath〉 ::= ‘/‘? 〈path〉 | 〈path〉 (‘ ∪ ‘ 〈path〉) ∗
〈path〉 ::= 〈step〉 (‘/‘ 〈step〉) ∗
〈step〉 ::= 〈test〉 (‘[‘ 〈qual〉 ‘]‘) ∗
〈test〉 ::= θ‘ :: ‘A | θ‘ :: ∗‘
〈qual〉 ::= 〈xpath〉 | 〈path〉 op c | 〈qual〉 and 〈qual〉 |

〈qual〉 or 〈qual〉 | not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘

where θ stands for an axis, c is a str constant, A is a label, op stands for one of
=, <, >, ≤, ≥. The result of the qual filtering is called qualifier and is denoted
by q.

We must note the semantic difference between 〈xpath〉 and 〈path〉: the former
may contain unions, while the latter may not. This is because XPath 1.0 [11]
does not allow unions in location steps. For the sake of readability, we ignore the
syntactic difference between xpath and path; we denote both with p. We also
abbreviate self by ε, child :: A/p with A/p, descendant-or-self :: A/p by
//A/p, and p = p1/p2 with p2 = //p′2 is written p as p1//p′2. The parent axis is
also abbreviated as ../.

The intuition behind XML security view is similar to that of multi-level secu-
rity view for relational databases [24], [30], [32], [35], discretionary access control
over relational databases [4] and object-oriented databases [8]. A typical ap-
proach to specifying and enforcing access control for traditional databases is to
define views on which security permissions should be applied. For instance, Lunt
et al. [23] showed how to use standard SQL queries to implement the SeaView
multi-level secure database. In contrast, the hierarchical structure and the de-
pendency (e.g., ancestor and descendants) of XML data as well as the presence
of disjunction and recursion in DTDs make it impossible to define a security

66 N. Rassadko

XML

XML

labeled
DTD

labeled
DTD

typing

partially
annotated

XML

annotation propagation

fully
annotated

XML

sanitization

authorized
view
XML

query

query evaluation

answer

annotation propagation

fully
annotated

DTD

view construction

σ-
function

materialization

materialized
view
XML

query

query evaluation

answer

DTD view
DTD

labeled
DTD

annotation propagation

fully
annotated

DTD

view construction

σ -
function

query rewriting

query

view
DTD

XML rewritten
query

DTD
query evaluation

answer

Authorized view use case Materialization use case Query rewriting use case

Fig. 1. Query answering use cases

view via a single query. Moreover, they introduce new challenges in how to gen-
erate a view that conforms to a DTD view. The challenges were observed in [3],
which showed that even for XML views of relational data, it is highly nontrivial
to ensure that the views typecheck.

The insight of XML security view construction was found in [30] where it was
demonstrated how to compute a full database labelling from a partial one implied
by security views. From the XML viewpoint, a partial assignment of security
labels to XML document nodes can be also extended to a full assignment. From
the latter, it is easy to compute an XML analogue of relational view by means of
“sanitization” operation that hides (e.g., deletes or encrypts) nodes with negative
authorizations, but reveals their permitted children. The resulting XML tree is
called authorized. This scenario is depicted on the left part of Fig. 1.

Unlike solutions presented in e.g., [5], [13], [16], [21], we employ schema-
level policy enforcement, resulting in the DTD schema of permitted data (or
in other words, DTD view like in [22], [33]) and hidden rules of DTD-to-DTD
view transformation. This pair (DTD view, hidden rules) can be used to con-
struct a materialized version of XML document by deleting forbidden nodes so
that the materialized view be isomorphic to the authorized view. Finally, the
materialized view is used for evaluation of user queries. We call such a query
answering schema view materialization use case. It is conceptually represented
on the central part of Fig. 1. There are two ways to implement this use case in
client-server architecture (where client tries to get an access to the XML doc-
ument and possesses a schema of available data, and server stores the initial
XML document and must satisfy requests of client to this document): server

Query Rewriting Algorithm Evaluation for XML Security Views 67

either stores every materialized view or recalculates a corresponding view on
the fly every time client issues a query. In the former case, the integrity main-
tenance becomes unfeasible. In the latter case, the view materialization can be
very time- and memory- consuming that is unacceptable in the presence of many
users requesting the database simultaneously.

To overcome limitations of the view materialization use case, we developed a
query rewriting use case when user ’s queries are answered without view materi-
alization: we rewrite a user query formulated for the DTD view into an equivalent
query formulated for the original DTD using hidden rules [31] and evaluate the
resulting query over the original XML database. The schema of such an approach
is shown on the right part of Fig. 1.

Hidden rules are defined for every edge of DTD view and describe the path
between nodes of that edge in the original DTD. For example, if hidden rule
σ(A, B) = B, node B is a child of node A in the original DTD; if σ(A, B) =
C[D]/B, B is a grandchild of A in the original DTD and the parent of B should
be C with a child D.

3 Query Rewriting Algorithm Description

The algorithm for query rewriting has two phases: query parsing and further
translation of the parsed query into σ-functions. Query parsing phase implies
that user query is represented as a tree of subqueries (parse tree) according
to the grammar that we have shown in Def. 1. The graphic representation of a
generic parse tree is show in Fig. 2. Namely, basic block is one of 〈xpath〉, 〈path〉,
〈step〉, 〈qual〉, or 〈test〉 which is θ::λ where λ is either an element type name or an
asterisk ∗; optional part is self-explaining (i.e., 〈xpath〉 may consist of one or more
〈path〉s that may consist of one or more 〈step〉s that may include zero or more
〈qual〉s); extended basic block is related to a qualifier of the form 〈path〉=const;
expression is related to qualifiers including and, or, and not operators with

xpath

pathpathpath ∪ ∪… ∪

stepstepstep / /… /

qualifierqualifiertest qualifier …

AND OR NOT xpathpath = const

basic block

optional part

expression

extended basic block

Legend

Fig. 2. Generic parse tree

68 N. Rassadko

operands as other qualifiers. If 〈xpath〉 or 〈path〉 occur in a qualifier, they are
parsed as basic blocks according to Def. 1. Leaves of the parse tree are 〈test〉s.

The translation of the parsed query starts from the leaves of the parse tree
and moves up to the root 〈xpath〉. In particular, for each subquery p and some
element A, the algorithm calculates QR(p,A) using Query Rewrite(pi, Bj),
where pi is a direct subquery (child in a parse tree) of p and Bj is a node reachable
from A via pi in Dv. At the same time, the algorithm calculates reach(p, A)
representing the set of nodes reachable from node A via the path p. To obtain a
rewriting of the initial user query q, we invoke Query Rewrite(q, root).

We do not provide here a formal presentation of Query Rewrite algorithm
since it was presented in [31]. Basically, the following rules characterize a process
of query rewriting:

1. rewriting of 〈xpath〉 is a union of rewritten 〈path〉s that constitute it;
2. rewriting of 〈path〉 is a rewriting every its step w.r.t. a 〈test〉 of a previous

〈step〉. Namely
– test1/child::test2 → σ(test1, test2);
– test1/parent::test2 → σ−1(test2, test1);
– test1/descendant-or-self::test2 →Query Rewrite(test1,path(test1,

test2)), path(test1, test2) is a path from test1 to test2 expressed by child
axes;

– test1/ancestor-or-self::test2 →Query Rewrite(test1,path−1(test1,
test2)), path−1(test1, test2) is a path from test1 to test2 expressed by
parent axes.

Here, if test2 is ∗ then test2 is any node v that is in a corresponding relation
with test1. The resulting rewritten expression, then, is a union of rewritten
expressions as if v where at the position of test2 = ∗.

3. rewriting of 〈test〉 with 〈qual〉 is a rewriting of 〈qual〉 w.r.t. 〈test〉;
4. rewriting of and/or/not expressions is respectively and/or/not expression

of rewritten subexpressions of the initial expression.

Here σ−1(A, B) is, basically, σ(A, B) that is inverted with the help of parent
axis so that to represent a path from B to A (which may be an ancestor in the
original DTD) instead of from A to B. For example, if σ(A, B)=A/C[D]/B, user
query contains a fragment B/parent::A, then this fragment will be rewritten as
B/parent::C[D]/parent::A[Query Rewrite(root, path(root, A))]. Note that
parent::A is extended with a qualifier that guarantees that A is indeed accessible.

If a set of steps of 〈path〉 can be represented as an array then we can divide
that array in two equal subarrays (one contains the left subpath, another - the
right one), we can recursively rewrite subpath corresponding to those subarrays
and join them in O(n) time, where n is a number of nodes reachable by the
left subpath from root node. If the path contains a reverse parent axes, the
inversion of a corresponding σ-function will take O(k) operations, where k is
the number of steps in σ-function. Hence, the overall complexity will be no more

Query Rewriting Algorithm Evaluation for XML Security Views 69

than O((n× k × log m), where m is a number of steps in path including those in
qualifiers. Since, n and k are limited numbers much smaller that the number of
elements in non-recursive DTD, the complexity of algorithm may be considered
O(log m).

The closest approach to query rewriting is presented by Fan et al. in [14]. The
main differences are:

1. Our algorithm derives a security view without any dummy element types
which may be a source of sensitive information leakage. Therefore, the σ-
function used in our query rewriting has different semantics.

2. We use an extended XPath fragment has parent and descendant-or-self
axes.

3. Fan et al. use dynamic programming so that QR(q,A) is calculated for every
DTD element type A; while we perform a rewriting of q w.r.t. to a subset
of relevant element types A of DTD in a recursive manner. Thus, memory
is saved (in [14], memory can be always evaluated as Ω(m × |D|), where
m is a number of all steps in the path including those in qualifiers. In our
approach, there are cases when Θ(m) of memory is required).

4. Moreover, we use divide-and-conquer approach that is faster than simple
step-by-step lookup proposed in [14](takes O(n2) time)

5. However, we do not consider recursive DTDs, while Fan at al. [14] does.

4 Experimental Results

DTD document. In our experimental framework, we used the XMark bench-
mark [1] that provides the DTD schema auctions.dtd which describes an auc-
tion scenario. It defines around 75 elements describing a list of auction items,
information about bidders, sellers, buyers, etc. The schema of auctions.dtd is
shown on Fig. 3.

Security Annotation. Fig. 4 shows annotation for every registered user of
auctions portal (i.e. user that can participate in auction).

More precisely, the first rule (1) prohibits an access to the information about
items and their location in regions. Then, this rule is overridden so that items
located in North America are visible for people from United States or Canada
(policy 2) and items from United States that can be shipped not only within the
country are visible for everyone (policy 3).

Next, information about seller/bidder of any open auction (rules 4 and 5
respectively) is visible if the viewer is seller/bidder himself. In the same way,
information on buyer is protected in closed auctions (policy 8). All increases of
any particular auction is publicly visible (policy 7).

Rule 9 says that person may get a personal information only about him-
self/herself, i.e. person id should be equal to user login. The latter is expressed
by a dynamic variable $login. The instantiation of this variable is hardcoded,
i.e. if qualifier contains substring $login, it should be replaced by the login
name passed as a program parameter or taken as a system variable. A personal

70 N. Rassadko

site

regions

categories

catgraph

people

open_auctons

closed_auctions

category name

description

text

parlist

listitem

edge from

to

africa
asia
australia
europa
namerica
samerica

item

location

quantity

payment

shipping
incategory

mailbox

id

category

id

mail

from
to

date

person

emailaddress

phone
address

homepage

creditcard

profile

watches

street
city
country
province

zipcode

interest
education

gender

business

age
income

watch

open_auction

open_auction

closed_auction

id

id
initial
reserve
current

privacy

type
itemref item

bidder

sellerinterval

time

increase

personref

person

start

end buyer

price

annotation author
happiness

Fig. 3. Schema of the file auctions.dtd

profile, instead, can be publicly available if field business has a text value Yes.
However, business is not visible in its turn.

Queries. We have defined a set of queries (see Fig. 5) to test both the algorithm
Query Rewrite and the advantages of query evaluation w.r.t. different use
cases (see Fig. 1).

1 : ann(site, regions) = N
2 : ann(regions, namerica) = Q[/site/people/person[@id = $login]/address/country/text() =′ UnitedStates′

or /site/people/person[@id = $login]/address/country/text() =′ Canada′]
3 : ann(namerica, item) = Q[location/text() =′ United States′

and

shipping/text()! =′ Will ship only within country′]
4 : ann(open auction, seller) = Q[@person = $login]
5 : ann(open auction, bidder) = Q[personref/@person = $login]
6 : ann(bidder, increase) = Y
7 : ann(closed auction, price) = Q[parent :: closed auction/(buyer/personref or seller)/@person = $login]
8 : ann(closed auction, buyer) = Q[personref/@person = $login]
9 : ann(people, person) = Q[@id = $login]
10 : ann(person, profile) = Q[business/text() =′ Y es′]
11 : ann(profile, business) = N

Fig. 4. Annotation for a registered user of an auctions portal

Query Rewriting Algorithm Evaluation for XML Security Views 71

q1 : regions/africa
q2 : namerica/item
q3 : people/person/profile/business
q4 : open auctions/open auction[initial/text() <′ 50′

and current/text() >′ 100′]/increase

q5 : people/person/∗
q6 : open auctions/open auction/ ∗ /∗

q7 : people/person/profile[@income > 85000]/parent :: person/name
q8 : people/person/name/parent :: person/address/

parent :: person/profile[@income > 85000]/parent :: person/name

Fig. 5. Set of queries

Query q1 and q2 will try to get an access to items in African and North
American regions respectively. If we assume that the user is from American
region, the first query will return nothing, while the second query will get the
information about items in North America. Next, q3 should always return empty
set because of the policy rule 11. “Long” query q4 looks for increases of auctions
with the particular start and current prices. Queries q5 and q6 introduce asterisk
∗. Reverse parent axis is introduced in q7 that tries to get a name of a person
whose income is more than 85K. The result set of this query evaluation should
be the same as of the query q8 that includes three reverse parent axes.

Some rewritten queries are depicted on Fig. 6. More precisely, in q′2 before
namerica, a missing region goes. Field namerica itself is extended with a qual-
ifier which is σ(regions, namerica). In the same way, after item, σ(namerica,
item) goes. The rewriting of q′4 shows that the user will receive increases that
were posed by other users, while his own increase values are located under field
bidder that is visible for him since its person reference is equal to his login. In
q′5, asterisk ∗ is rewritten into the union of visible nodes that are in the relation
child with people. The rewriting of q′6 has the same idea. In q7, we would like
to note that profile is extended with a security qualifier σ(person, profile) in
addition to a user-defined filter on it. The second line of q′7 represents reverse
axis rewriting. This part is inserted in q′8 three times. Finally, q1 and q3 are
rewritten to null because the user cannot see either africa (policy rule 1) or
business (policy rule 11).

XML documents. XMark data generator [1] produces XML documents con-
forming to a DTD auctions.dtd depicted on Fig. 3. Number and type of el-
ements in resulting XML depend on parameter called factor. The significant
feature of XMark benchmark is the generation of one unique XML document
for one factor value. We generated 20 XML documents with factor 0.0i0 and
0.0i5, where i = 0, 9. The size of these XML files varies from 0.3Mb to 9Mb (all
together around 100Mb).

Performance results. We tested our implementation on Windows XP plat-
form, Intel Pentium M 1.4GHz, 256Mb DDR SDRAM. For each XML document
(recall, we have 20 XML documents), we run evaluation of each query qj , j = 1, 8
from the viewpoint of 10 users (login = personi, where i = 0, 9) measuring time

72 N. Rassadko

q′
2 : regions/namerica[/site/people/person[@id = $login]/address/country/text() =′ United States′

or/site/people/person[@id = $login]/address/country/text() =′ Canada′]/
item[location/text() =′ United States′

and shipping/text()! =′ Will ship only within country′]
q′
4 : open auctions/open auction[initial/text() <′ 50′

and current/text() >′ 100′]
/bidder[not(personref/@person = $login)]/increase

q′
5 : people/person[@id = $login]/(address|watches|phone|name|creditcard

|emailaddress|profile[business/text() =′ Y es′]|homepage)
q′
7 : people/person[@id = $login]/profile[business/text() =′ Y es′][@income > 85000]/

self :: profile[business/text() =′ Y es′]/parent :: person[/site/people/person[@id = $login]]/name

Fig. 6. Set of rewritten queries

Table 1. Query rewriting performance results

q1 q2 q3 q4 q5 q6 q7 q8

person0 70 71 60 71 60 60 60 70

person1 60 60 60 60 60 60 70 71

person2 60 70 60 60 60 70 70 70

person3 60 60 60 70 60 70 80 70

person4 60 60 70 70 60 60 70 80

person5 60 60 70 60 70 70 70 80

person6 60 60 70 60 70 70 80 61

person7 70 60 60 80 80 70 80 70

person8 60 60 70 70 70 70 60 70

person9 70 81 60 70 60 60 61 80

avg 63 64.2 64 61.1 65 66 69 72.2

of query rewriting (that includes time of DTD view and σ-function construction)
t1i,j and time of query answering t2i,j .

Query rewriting performance results are shown in Table 1 where each cell
(i, j) contains time t1i,j (in milliseconds) required to rewrite qj , j = 1, 8 for
personi, i = 1, 10. In all experiments DTD view construction time was between
520 and 620 milliseconds. In the query rewriting part, the measured time includes
a query parsing and Query Rewrite running. We used SiXPath 1 processor
to parse XPath queries into their tree representation. The processor represents
steps of a path in array, so we can apply divide-and-conquer technique that im-
proves efficiency of query rewriting. From Table 3, it can be easily seen that more
complicated query requires more time to be rewritten. However, one point is that
in reality, the user does not formulate such cumbersome queries like q8 that, in-
deed, require “much” time for rewriting. On the other hand, even if the user
issues a query that contains time-consuming elements like ∗ or parent axes, the
query rewriting performance degrades insignificantly (less than 10 milliseconds
between the easiest (consisting of 2 location steps) and the hardest (consisting
of 10 location steps and of 3 parent axes) query in our test case).

1 http://sourceforge.net/projects/sixpath

Query Rewriting Algorithm Evaluation for XML Security Views 73

Authorized view

0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000

XML size

Q
u

er
y

an
sw

er
in

g
 t

im
e

(m
s)

q2 q4 q5 q6 q7 q8

(a) Authorization view use case

Materialized view

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

XML size

Q
u

er
y

an
sw

er
in

g
 t

im
e

(m
s)

q2 q4 q5 q6 q7 q8

(b) Materialized view use case

Query rewriting

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000

XML size

Q
u

er
y

an
sw

er
in

g
 t

im
e

(m
s)

q2 q4 q5 q6 q7 q8

(c) Query rewriting use case

Fig. 7. Experiments

74 N. Rassadko

Query answering time was evaluated by a Xalan 2 XPath evaluator. Un-
fortunately, XML Task Force evaluator 3 which is shown in [18] as the most
efficient and scalable XPath evaluator, could not be used in our test frame-
work because it does not accepts queries that contain union, e.g., like queries
q′5, q′6. The overall result computation performance is shown on Fig. 7: for
each query qj , j = 1, 8, login personi, 1, 10 and each of 20 XML files we per-
formed query evaluation and calculated its average meaning in i, i.e. every dot
in flow-chart polylines represents average time for query j and a correspond-
ing XML document. Namely, the Fig. 7(a) shows our experience with XML
Access Control Processor (XMLACP) developed by Damiani et al. [13]. Query
evaluation includes a preliminary construction of an authorized view which is
extremely time consuming. This is because security annotations are propagated
on the XML tree. Moreover, security annotation is, basically, a pair 〈xp, lbl〉,
where xp is an XPath expression defining a node being labeled, lbl is Y or N.
Since xp may include qualifiers, the step of initial labeling takes much time
which grows exponentially with the growth of the initial XML document size.
We ceased the conduction of experiments after 11th XML document
(500Kb) because of their obvious unfeasibility in terms of time for the larger
XML documents.

We have to note that XMLACP approach does not delete forbidden XML
nodes if they have permitted descendants, it rather clears their attributes. There-
fore, user queries should include even forbidden steps that may reveal sensitive
information. We constructed such queries from the output of Query Rewrite

but without qualifiers included by a corresponding σ-expression. Another issue
is related to a set of authorized views. Their number can be enormous (e.g., we
can derive 126 personal views from an XML document computed with factor
0.050, i.e. of the size around 500Kb; this number grows exponentially with in-
creasing XML size on 500Kb) but their sizes is about 10% less than the initial
XML document. Therefore, storing all individual views is not feasible even if do
not consider integrity maintenance problem.

Materialization use case shown in Fig. 7(b) shows a much better result in time
performance. On the other hand, space required for view storing is also reduced
since we delete all intermediate N-labeled nodes.

Finally, query rewriting use case is shown in Fig. 7(c). We have some doubts
on the affectiveness of query rewriting use case, because a rewritten query
may include complicated qualifiers that, in their turn, may require a time-
consuming evaluation over the initial XML tree. However, our experiments show
that this use case is the best all considered in this paper: it is at least two times
faster than the previous case and does not require an additional storage for a
materialized view.

Unfortunately, we could not retrieve other existing XML securing systems,
e.g., Author-X [5] (it is lost and cannot be recuperated because of the storing

2 http://xml.apache.org/xalan-j/
3 http://www.dbai.tuwien.ac.at/research/xmltaskforce/

Query Rewriting Algorithm Evaluation for XML Security Views 75

computer crash 4.), Lock-X [9] (for the same reason 5.), SMOQE [15] (because
of experiment conduction for additional research 6.).

5 Related Work

5.1 Runtime Policy Evaluation

The general scenario of the current category of proposals is the following: The sys-
tems defines a set of access control rules of the form 〈subject, object, action, sign〉
where subject is self-explaining, object is an XML element/attribute expressed by
XPath, action is typically read/write, sign∈ {+, −}. Different conflict resolu-
tion rules and default policy are established as well. With respect to user’s request
〈req subject, req object, req action〉, access control rules applicable to req subject
is selected, their signs for req action are propagated to req object. Hence, permis-
sion is granted to the user if the resulting sign on req object is +; otherwise, the
access is denied.

In particular, [21] introduces the notion of provisional authorization, when
some provisional action (e.g., logging, transcoding) is performed according to
the user’s request. The proposal of [7] considers the case when the access control
is moved to clients, e.g, secure tokens and smart cards that are used as trust com-
ponents in different mobile devices (e.g., PC, PDA, cellular phone) participating
in applications dealing with sensitive information (e.g., certification, electronic
voting, e-payment, health care, etc.). Several papers consider the case of evolving
access control policies expressed in XQuery [17] and by means of RDF [2], [19].
Such policies can be used for a derivation of new access control rules including
content-based constraints of requested and other documents, environmental in-
formation like time and place of request initiator, information about possessed
privileges.

Run-time policy evaluation can be accelerated by efficient lookup of com-
pressed accessibility map where compression is performed on objects [37], on
objects and actions [20], on objects, subjects and actions [38]. Another direc-
tion for improving runtime policy evaluation concerns statical analysis of user
queries [28], integration of policy into user query [25], matching user query
against efficient policy representation as a tree [29]. In the case when mandatory
access control is considered, recursive checks can be reduced by adding special
predicates to node tests in the user query [10].

An association between XML nodes can be hidden either at the stage of policy
definition [19] or after detecting the possibility of information leakage in security
view [36]. Finally, access control for XML documents can be strengthen with a
role-based concepts [34].

4 Personal communication with Elena Ferrari
5 Personal communication with SungRan Cho
6 Personal communication with Wenfei Fan

76 N. Rassadko

5.2 Security Views for XML

This scenario is called authorization view use case in the current paper. The
details can be seen, e.g., in [5], [16], [13]. The variation of this use case enforces
access control policies cryptographically.

For example, the approach in [6] is based on Author-X [5]. It avoids generation
of multiple physical views for each use by means of different keys for encrypting
different portions of the same document. One and only one key is responsible
for encryption of each portion of the source XML document. To minimize the
number of encryption keys, the portions of the document protected with the
same set of policies are encrypted with the same keys. The consequent scenario
is key distribution and periodical broadcast of the encrypted document.

Miklau and Suciu extend the Bertino’s idea of secure and selective dissemina-
tion of XML documents with the notion of conditional access control rules [26],
which generalizes the term “subject”, i.e. authorization is based not on network
identifier or user name, but on knowledge presented by the user.

The ideas of [6] and [26] are refined and extended with RBAC in [12].

5.3 Schema-Based Security Views

Stoica and Farkas [33] proposed to produce single-level views of XML when
conforming DTD is annotated by labels of different confidentiality levels. The key
idea lies in analyzing semantic correlation between element types, modification
of initial structure of DTD and using cover stories. Altered DTD then undergoes
“filtering” when only element types of the confidentiality lever no higher that the
requester’s one are extracted. However, the proposal requires expert’s analysis of
semantic meaning of production rules, and this can be unacceptable if database
contains a large amount of schemas which are changed occasionally. No query
rewriting is discussed.

Another view-based approach is proposed by Fan et al in [14]. In [22], we re-
fined this solution with other DTD view derivation and XML view materializa-
tion algorithms. In this paper, we underlined the similarities and the differences
with our approach to query rewriting.

The recent approach to schema-based security views was presented in [27]. The
solution allows a complete restructuring of a DTD and relies on a command-like
specification language. However, it was mentioned in [27] that many operations
are not commutative and have restrictions that means a possibility of errors while
designing access control policies. A sophisticated query rewriting is provided.

6 Conclusion

In this paper, we have studied the performance of answering queries on an XML
database, subject to access control annotations applied on the original DTD.
We show that the query rewriting approach compared to the case of autho-
rized/materialized view is more efficient in sense of time and space.

Query Rewriting Algorithm Evaluation for XML Security Views 77

Time effectiveness takes place because we avoid view materialization which is
a time consuming operation. In our experimental benchmark the query rewriting
strategy retrieves answer for user query at least 2 times faster than in the case
the materialized view and at least 100 faster than in the case of authorized view.
Another mentioned point is the space preserving property of advanced method.
We recall that the number of views can be extremely large and their size may, in
the very good case, be 50% smaller w.r.t. the initial XML document. This may
cause problems with the disc space allocation and with the maintenance of data
integrity.

Our future research direction is related to drawbacks of the suggested labeling
mechanisms outlined below:

1. Hardcoding of user attributes in qualifiers. If at some stage behavior of the
system is changed, e.g. from identity based authorization to credential based
one (i.e. login may be substituted by private key or social security num-
ber, or even by a boolean combination of these attributes), we need to
rewrite and recompile the source code responsible for parsing a set of program
parameters.

2. The suggested approach of security specification lacks flexibility in defining
access rules based on user credentials (i.e. distributed environment with mul-
tiple users unknown in advance) and purposes for data storage/access (i.e.
privacy issues).

3. Multiple labels of the same semantics but of the different syntax complicate
variation of policies.

4. The same syntactically equal qualifiers have the same semantics. Therefore,
a change in one qualifier requires revisiting of all the same qualifiers.

5. We are going to investigate the issue of ID/IDREF attributes. Namely, we
want to answer the question: what happens if ID attribute should be deleted
but its referencing IDREF attribute should exist? Answering this question
will help us to extend XML security views to a distributed/fedrated/shared
environment.

6. Finally, we are planning to extend our view derivation and query rewriting
algorithms for the case of recursive DTDs.

Acknowledgements. This work has been partially supported by EU commis-
sion under the SERENITY project. I would also like to thank Gabriel Kuper and
Fabio Massaci for their valuable advises regarding query rewriting algorithm.

References

1. XMark – An XML Benchmark Project. http://monetdb.cwi.nl/xml/index.html
2. Anutariya, C., Chatvichienchai, S., Iwaihara, M., Wuwongse, V., Kambayashi, Y.:

A rule-based XML access control model. In: RuleML, pp. 35–48 (2003)
3. Benedikt, M., Chan, C., Fan, W., Rastogi, R., Zheng, S., Zhou, A.: DTD-directed

publishing with attribute translation grammars. In: Bressan, S., Chaudhri, A.B.,
Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS,
vol. 2590, Springer, Heidelberg (2003)

http://monetdb.cwi.nl/xml/index.html

78 N. Rassadko

4. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Transactions on Information Systems
(TOIS) 17(2), 101–140 (1999)

5. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proceedings of the IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, pp. 15–26. Kluwer
Academic Publishers, B.V (2001)

6. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Transactions on Information and System Security (TISSEC) 5(3), 290–331
(2002)

7. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access control management
for xml documents. In: Proceedings of the 30th Conference on Very Large Data
Bases (VLDB’04), pp. 84–95 (2004)

8. Boulahia-Cuppens, N., Cuppens, F., Gabillon, A., Yazdanian, K.: Multiview model
for object-oriented database. In: Proceedings of the Annual Computer Security
Applications Conference, pp. 222–231 (1993)

9. Cho, S., Amer-Yahia, S., Lakshmanan, L.V.S., Srivastava, D.: LockX: a system
for efficiently querying secure XML. In: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data (SIGMOD’03), pp. 669–669. ACM
Press, San Diego, California (2003)

10. Cho, S., Amer-Yahia, S., Lakshmanan, L.V.S., Srivastava, D.: Optimizing the se-
cure evaluation of twig queries. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu,
J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 490–
501. Springer, Heidelberg (2003)

11. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. w3c recommenda-
tion (1999), http://www.w3.org/TR/xpath

12. Crampton, J.: Applying hierarchical and role-based access control to XML doc-
uments. In: Proceedings of ACM Workshop on Secure Web Services (SWS’04),
Fairfax, VA, USA, ACM Press, New York (2004)

13. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-
grained access control system for XML documents. ACM Transactions on Infor-
mation and System Security (TISSEC) 5(2), 169–202 (2002)

14. Fan, W., Chan, C.-Y., Garofalakis, M.: Secure XML querying with security views.
In: Proceedings of the 2004 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’04), pp. 587–598. ACM Press, New York (2004)

15. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: SMOQE: a system for providing
secure access to XML. In: SMOQE: a system for providing secure access to XML.
VLDB Endowment, pp. 1227–1230 (2006)

16. Gabillon, A., Bruno, E.: Regulating access to XML documents. In: Proceedings
of the IFIP TC11/WG11.3 fifteenth annual working conference on Database and
application security, Niagara, Ontario, Canada, pp. 299–314. Kluwer Academic
Publishers, Dordrecht (2001)

17. Goel, S.K., Clifton, C., Rosenthal, A.: Derived access control specification for XML.
In: Proceedings of the 2nd ACM Workshop On XML Security (XMLSEC’03), pp.
1–14. ACM Press, New York (2003)

18. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithm for processing XPath queries.
In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002
and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

19. Gowadia, V., Farkas, C.: RDF metadata for XML access control. In: Proceedings
of the 2nd ACM Workshop On XML Security (XMLSEC’03), Fairfax, Virginia,
pp. 39–48. ACM Press, New York (2003)

http://www.w3.org/TR/xpath

Query Rewriting Algorithm Evaluation for XML Security Views 79

20. Jiang, M., Fu, A.W.-C.: Integration and efficient lookup of compressed XML
accessibility maps. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 17(7), 939–953 (2005)

21. Kudo, M., Hada, S.: XML document security based on provisional authorization.
In: Proceedings of the 7th ACM Conference on Computer and Communications
Security (CCS’00), pp. 87–96. ACM Press, New York (2000)

22. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML security views. In: Pro-
ceedings of the tenth ACM symposium on Access control models and technologies
(SACMAT’05), pp. 77–84. ACM Press, New York (2005)

23. Lunt, T.F., Schell, R.R., Shockley, W.R., Heckman, M., Warren, D.: A near-term
design for the SeaView multilevel database system. In: Proceedings of IEEE Sym-
posium on on Security and Privasy (SSP-88), pp. 234–244. IEEE Computer Society
Press, Los Alamitos (1988)

24. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The SeaV-
iew security model. IEEE Transactions on Software Engineering (TOSE) 16(6),
593–607 (1990)

25. Luo, B., Lee, D., Lee, W.-C., Liu, P.: QFilter: Fine-grained run-time XML access
control via NFA-based query rewriting. In: Proceedings of the thirteenth ACM
international conference on Information and knowledge management (CIKM’04),
pp. 543–552. ACM Press, New York (2004)

26. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems,
and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 898–909. Springer, Heidelberg
(2004)

27. Mohan, S., Sengupta, A., Wu, Y., Klinginsmith, J.: Access control for XML - a
dynamic query rewriting approach. In: Proceedings of the 32th Conference on Very
Large Data Bases (VLDB’06). VLDB Endowment, Seoul, Korea, pp. 1–12 (2006)

28. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. In: Proceedings of the 10th ACM Conference on Computer and Commu-
nication Security (CCS’03), pp. 73–84. ACM Press, New York (2003)

29. Qi, N., Kudo, M.: XML access control with policy matching tree. In: de Capi-
tani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 3–23. Springer, Heidelberg (2005)

30. Qian, X.: View-based access control with high assurance. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy (SP’96), Washington, DC, USA,
p. 85. IEEE Computer Society Press, Los Alamitos (1996)

31. Rassadko, N.: Policy classes and query rewriting algorithm for XML security views.
In: Damiani, E., Liu, P. (eds.) Data and Applications Security XX. LNCS, vol. 4127,
pp. 104–118. Springer, Heidelberg (2006)

32. Stachour, P.D., Thuraisingham, B.: Design of LDV: A multilevel secure relational
database management system. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE) 2(2), 190–209 (1990)

33. Stoica, A., Farkas, C.: Secure XML views. In: Proceedings of the 16th Interna-
tional Conference on Data and Applications Security (IFIP’02). IFIP Conference
Proceedings, vol. 256, pp. 133–146. Kluwer, Dordrecht (2002)

34. Wang, J., Osborn, S.L.: A role-based approach to access control for XML databases.
In: Proceedings of the 9th ACM symposium on Access control models and tech-
nologies (SACMAT’04), pp. 70–77. ACM Press, New York (2004)

35. Wilson, J.: Views as the security objects in a multilevel secure relational database
management system. In: Proceedings of IEEE Symposium on Security and Privacy
(SSP’88), pp. 70–84. IEEE Computer Society Press, Los Alamitos (1988)

80 N. Rassadko

36. Yang, X., Li, C.: Secure XML publishing without information leakage in the pres-
ence of data inference. In: Proceedings of the 30th Conference on Very Large Data
Bases (VLDB’04), pp. 96–107 (2004)

37. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: A compressed acces-
sibility map for XML. ACM Transactions on Database Systems (TODS) 29(2),
363–402 (2004)

38. Zhang, H., Zhang, N., Salem, K., Zhuo, D.: Compact access control labeling for
efficient secure XML query evaluation. In: Proceedings of the 21st International
Conference on Data Engineering Workshops (ICDEW’05), p. 1275 (2005)

Answering Queries Based on Imprecision and

Uncertainty Trade-Offs in Numeric Databases�

Alexander Brodsky1,2, Lei Zhang1, and Sushil Jajodia1

1 Center for Secure Information Systems
George Mason University Fairfax, VA, USA

2 Dept. of Computer Science
George Mason University Fairfax, VA, USA

{brodsky,lzhang8,jajodia}@gmu.edu

Abstract. Considered in this paper are numeric databases, whose in-
stances are vectors in Rn, queries involve their linear transformations,
and imprecise query answers are intervals. Introduced for the first time
is a security requirement function ρ for a query, to specify the maximum
probability ρ(l) that the precise query answer is within any interval of
size l. Developed are random disclosure algorithms that satisfy security
requirement functions, and guarantee, under certain conditions, maxi-
mum data availability.

Keywords: numeric database; database security; data availability; im-
precision; uncertainty.

1 Introduction

Controlling information disclosure is a major task in database security. The main
concern in information disclosure is the balance between confidentiality and data
availability. This balance, in turn, is based on the fundamental question of how
confidentiality and data availability are measured.

There has been extensive work on disclosure control. Many disclosure control
methods, including MAC, DAC and RBAC, (e.g., [5,8,14,3]) are based on the
notion of information objects of certain granularity (along with other concepts
such as subjects or roles), and make binary decisions on whether or not to disclose
objects. However, when the system decides not to disclose an object, no partial
information is given.

There have been disclosure control methods, including k-anonymity and l-
diversity (e.g., [12,13,11]), that use uncertainty, explicitly or implicitly, in an-
swering queries. For example, the user may not know the salary of a person,
but know that the salary is one of three possible values. However, uncertainty
alone is not enough, when the data is numeric. For example, if the three possible
values of salary differ only by a small amount, essentially the salary has been
disclosed.
� This material is based upon work supported by National Science Foundation under

grants CT-0627493, IIS-0242237, and IIS-0430402; and by Army Research Office
under the grant W911NF-07-1-0383.

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 81–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 A. Brodsky, L. Zhang, and S. Jajodia

To deal with the numeric data disclosure, some works (e.g., [4,10,15]) sug-
gested making answers imprecise. For example, instead of answering a person’s
salary, the system will answer an interval, e.g., from $35000 to $65000. How-
ever, the imprecise answer may not be good enough, because the user may have
additional probabilistic knowledge, such as salary distribution, and, using this
distribution, be able to infer that the salary of a person is within a very small
interval with relatively high probability.

To remedy the last problem, there has been work (e.g., [9,2,6]) that adopted
statistical approach considering both the confidence (for measuring uncertainty)
and confidence intervals (to reflect imprecision), in both answering queries and
specifying security requirements.

We believe however, that the approach of confidence intervals is not sufficient
to express a security requirements that the smaller the confidence interval is, the
smaller must be the confidence. For example, if we require the user’s confidence
of any interval of one person’s salary with the size of $5000 to be equal or smaller
than 50%, this requirement does not prevent the user from having a confidence
of 50% about a fact that the person’s salary is a particular value, says, $75000.
This is precisely the subject of this paper. More specifically, the contributions
of this paper are as follows.

We consider a numeric database whose instance consists of n variables (x1,. . .,
xn), holding real numbers v1, . . . , vn, respectively, i.e., it is a vector v in Rn. User
queries can request the value of a variable or of a linear arithmetic combination
of these variables of the form c1x1 + . . . + cnxn.

Given a database instance, the system uses a random disclosure algorithm to
compute an approximate view I which is an n-dimensional rectangle in Rn that
contains the database instance v. We assume that the user knows the random
disclosure algorithm used by the system, and the original distribution of v. Given
that, the system also obtains the conditional probability distribution ν of v in
I, which represents user’s implied knowledge. Then, when the user imposes a
query q, the system returns the minimal interval Iq , such that the true answer
aq is in Iq with probability 1, according to the user knowledge (I, ν).

To the best of our knowledge, this is the first paper to introduce a security
requirement function ρ : [0, l0] −→ [0, 1] for a query q to require that, for any
interval of size l ∈ [0, l0], the probability that the answer aq to q is within
this interval be bounded by ρ(l), according to the user’s implied knowledge
ν. We also assume that a fixed set of query views q1, . . . , qk is given, and a
security requirement function is given for each query view. Intuitively, query
views indicate the relevant or important axes for security and data availability
consideration. Note that they can be either from the original axes x1, . . . , xn or
their linear combinations, which correspond to other axes in Rn.

We also formally define the notion of data availability function by the user-
derived knowledge, and the notion of maximum data availability. Intuitively, the
maximum data availability is satisfied by the knowledge (I, ν), if it provides data
availability that is better or same, for every query view, than of any other pair
(I ′, ν′) that satisfies the security requirement functions for query views.

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 83

We first study the basic, one-dimensional case (i.e., one variable x1, which
is the only query view q1), and assume that the original database instance is
uniformly distributed within an interval. For this case, we develop a random
disclosure algorithm for which we prove that (1) it satisfies an input security
requirement function, and (2) under certain conditions, satisfied with a quantifi-
able probability, it provides the maximum data availability. We then exemplify
how to relax the requirement of uniform distribution of a database instance, but
the idea of this extension can be applied to other distributions as well.

Second, we consider the multi-dimensional independent case under the limita-
tion that (1) query views are the original variables x1, . . . , xn (i.e., do not involve
linear combinations), and (2) the distributions of dimensions xi, i = 1, . . . , n
over the projections Ii of I are independent of each other. For this case, we
show how to extend the random disclosure algorithm, so that it will satisfy the
same properties, except for a different bound on the probability that maximum
data availability is achieved.

Third, we turn to a restricted multi-dimensional dependent in which query
views are allowed to be linear combinations. We study in detail a specific setting
of two variables x1 and x2, three query views x1, x2 and x1 + x2, and the
security requirement functions ρ1, ρ2 and ρ3 respectively, defined by ρ1(l) = l/l1,
ρ2(l) = l/l2, and ρ3(l) = l/l3, where l3 = λ1/λ2(l1 + l2) and λ1, λ2 are positive
integers. For this setting, we provide a random disclosure algorithm for which
we prove that there exists two-dimensional user knowledge (I, ν), that satisfies
maximum data availability with respect to ρ1, ρ2 and ρ3. We believe that this
restricted case is key to understanding the extension to the general dependent
case, which is left for future research.

This paper is organized as follows. Section 2 introduces formal definitions of
security requirement function, user implied knowledge, data availability function,
and the notion of maximum data availability, and proves that the user knowl-
edge that provides maximum data availability exists. Section 3 studies the case
when dimensions are independent, starting with the one-dimensional case, and
Section 4 studies the restricted dependent case. Section 5 concludes and briefly
outlines future research directions.

2 Function Based Security Requirement & Data
Availability

2.1 A Function-Based Security Requirement

To simplify the discussion, we first consider a one-dimensional numeric database
that consists of a single real variable x, which is the only sensitive query view q =
x. We also assume that the probability distribution of x in interval [L, R] ⊂ R is
known by users. We denote by v, the current value held by x, i.e, the database
instance. In this case, the random disclosure algorithm A takes v ∈ R as input
and randomly produces an interval I that contains v as output, which serves as
an approximate view.

84 A. Brodsky, L. Zhang, and S. Jajodia

Once the result I is returned, the user would have the knowledge that x ∈ I.
Also, we make the standard assumption that the random disclosure algorithm
is publicly known.

We denote by PU the user-implied probability function, and by F the user-
implied conditional distribution function, i.e., F (x) = PU (x ≤ v|A(x) = I). Let
ν be the probability density function (PDF) corresponding to F . Using Bayesian
inference, we have:

∀v ∈ I, ν(v) = fx|A(x)=I(v) =
fI|x=v(I)fx(v)

fI(I)

where fI(I) =
∫ R

L
fI|x=s(I)fx(s)ds and fI|x=v(I) denotes the density function

that A outputs I under the condition that x = v.
Thus, we represent the user’s knowledge about x as a pair (I, ν) that is pro-

vided by A, which we call a knowledge pair.
Security requirements of database are to restrict users’ knowledge about sen-

sitive values in the database. However, restricting only the size of the interval
in user’s knowledge pair is not sufficient. For example, suppose that a returned
interval is [0, 1], but the user can determine, from the conditional distribution
function, that PU (v ∈ [0.999, 1]) = 0.9. Clearly, situations like this may be unac-
ceptable. One way to avoid such situations is to specify a security requirement
as a pair (l, ρ), meaning that:

∀I ′ ⊂ R, sizeof(I ′) < l ⇒ PU (v ∈ I ′) ≤ ρ

If, for example, l = 0.1 and ρ = 0.5, then the answer in the previous example
would violate this security requirement pair (l, ρ). However, the representation
of security requirement as a pair (l, ρ) still may not be sufficiently expressive,
because we can not express that the smaller the size of the interval, the smaller
the probability should be. For example, given a security requirement pair (1, 0.5),
we can not distinguish between the following two situations of user knowledge:
(1) x is uniformly distributed in an interval of size 2, and (2) x can be one of
two values, having a distance of 1, with 0.5 probability for each.

To be able to differentiate between such situations, we propose to represent a
security requirement as a function, that gives probability for each interval length
l over a continuous domain.

Definition 1. A security requirement function for a sensitive variable x is a
function ρ : D → [0, 1], where the domain D is an interval [0, l0], such that:
(1) ∀l1, l2 ∈ D, l1 ≤ l2 ⇒ ρ(l1) ≤ ρ(l2)
(2) ∀l1, l2 ∈ D, ρ(l1 + l2) ≤ ρ(l1) + ρ(l2)
(3) ρ(l0) = 1

We say that a knowledge pair (I, ν) satisfies a security requirement function ρ if
the following holds:

∀l ∈ D, a, b ∈ I, 0 ≤ b − a ≤ l ⇒ PU (a ≤ x ≤ b) ≤ ρ(l)

where PU (a ≤ x ≤ b) =
∫ b

a
ν(x)dx. 1

1 Note that, the restrictions that D is an interval and ρ(l0) = 1 can be lifted. These
restrictions are made in this paper for the sake of simplicity.

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 85

l l

1

l0 l0

1

(A) (B)
1

1

(C)
l

0.5

.

Fig. 1.

It is important to note that any finite set of security requirement pairs can be
equivalently represented by a security requirement function. For example, the
pair-wise security requirement (1, 0.5) can be represented as a function shown in
Figure 1 (C). Note also that Figure 1 (A) shows a possible security requirement
function while (B) shows a function that does not satisfy its second property.

2.2 A Function-Based Data Availability Measure

We need to be able to compare different knowledge pairs in terms of data avail-
ability. More formally,

Definition 2. A Data Availability Function for a given knowledge pair (I, ν) is
a function α : [0, sizeof(I)] → [0, 1], defined by:

α(l) = maxa,b∈I,b−a=l{PU (a ≤ x ≤ b)}

where PU (a ≤ x ≤ b) =
∫ b

a
ν(x)dx.

Definition 3. Given knowledge pairs (I1, ν1) and (I2, ν2) and their data avail-
ability functions α1 and α2, respectively, we say that (I1, ν1) provides better data
availability than (I2, ν2), if:

– sizeof(I1) ≤ sizeof(I2), and
– ∀l ∈ I1, α1(l) ≥ α2(l)

Note that better data availability is only a partial order. Yet, we define a strong
notion of maximum data availability as follows.

Definition 4. We say that (I1, ν1) provides the maximum data availability w.r.t.
a security requirement function ρ if:

– (I1, ν1) satisfies ρ, and
– For any other knowledge pair (I ′, ν′) that satisfies ρ, (I1, ν1) provides better

data availability than (I ′, ν′).

86 A. Brodsky, L. Zhang, and S. Jajodia

The next lemma follows directly from the previous definitions.

Lemma 1. If the data availability function α of a knowledge pair (I, ν) is iden-
tical to a security requirement function ρ, then (I, ν) provides the maximum data
availability w.r.t. to ρ.

We use Lemma 1 to prove the following theorem:

Theorem 1. If a security requirement function ρ : D → [0, 1] is continuous
from the right, there exists a knowledge pair (I, ν) that provides the maximum
data availability w.r.t. ρ.

Proof. Because ρ is continuous from the right and the definition of a security
requirement function, ρ satisfies the properties of a probability distribution func-
tion. By Lemma 1, to prove the theorem, it suffices to construct a knowledge
pair (I, ν), such that its data availability function α identical to ρ. We do that
as follows: (1)let I = D; (2)let ν be the density function of ρ2. By definition of
data availability function, we have:

∀l ∈ I, α(l) = maxa,b∈I,b−a=l{
∫ b

a

ν(x)dx}

Clearly,

α(l) = maxa,b∈I,b−a=l{
∫ b

a

ν(x)dx} ≥
∫ l

0

ν(x)dx = ρ(l)

On the other hand, by definition of a security requirement function,

∀a, b ∈ I, b − a = l, ρ(l) ≥ ρ(b) − ρ(a) =
∫ b

a

ν(x)dx

Then,

ρ(l) ≥ maxa,b∈I,b−a=l{
∫ b

a

ν(x)dx} = α(l)

Therefore, α = ρ, which completes the proof. �

3 Providing Maximum Data Availability for Independent
Cases

3.1 One-Dimensional Case

Consider Algorithm 1, which is a random disclosure algorithm for the one-
dimensional case.

Algorithm 1
– Input: (1) the security requirement function ρ which is continuous from the

right, with its domain D = [0, l0]; (2) the true value v of x; and (3) an
interval [L, R] within which x is uniformly distributed.

2 Density function of discrete cases can be represented by Dirac Delta Function.

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 87

– Output: An interval I = [vl, vr].

– Process:

(1) Construct the knowledge pair (I ′, ν′) using the process in the proof of
Theorem 1.

(2) Randomly select a value v′ from I ′ = [0, l0] using the PDF ν′.
(3) Let vl = v − v′, vr = vl + l0, output I = [vl, vr].

Algorithm 1 assumes that the x is uniformly distributed in an interval [L, R].

Theorem 2. (1) If I = [vl, vr] returned by Algorithm 1 is contained in [L, R],
then the corresponding knowledge pair (I, ν) satisfies ρ and, furthermore, pro-
vides the maximum data availability w.r.t. ρ; (2) The probability that Algorithm
1 outputs an interval I such that I ⊆ [L, R] is greater than R−L−2l0

R−L .

Proof. ∀v ∈ I

ν(v) =
fI|x=v(I)fx(v)

∫ R

L

fI|x=s(I)fx(s)ds

= ν′(v − vl)fx(v)

fx(v)
∫ R

L

fI|x=s(I)ds

= ν′(v − vl)fx(v)

fx(v)
∫ vr

vl

v′(s − vl)ds

= ν′(v − vl)fx(v)
fx(v)

= ν′(v − vl)

It is easy to see that (I, ν) and (I ′, ν′) have

the same data availability function, which, from the proof of Theorem 1, is
identical to ρ. Therefore, (I, ν) provides the maximum data availability w.r.t. ρ.
Part(2) follows from the fact that if v is within the interval [L + l0, R − l0], the
output interval will always satisfy I ⊆ [L, R]. ��

3.2 Special Cases Near the Borders

There is non-zero probability that Algorithm 1 will produce an interval I that
is not contained in [L, R]. For that reason, the security requirement function ρ
may not be satisfied.

To avoid such a situation, one possible amendment to Algorithm 1 is to set
an inner interval, [L′, R′] ⊆ [L, R]. Then, if the output interval I = [vl, vr]
of Algorithm 1 satisfies the condition vl < L′, then I is replaced with IL =
[L, L′ + l0], similarly, if vr > R′, then I is replaced with IR = [R′ − l0, R].

Clearly, the user can distinguish whether a ”regular” interval I, IL or IR is
returned. If a regular I is returned, the satisfaction of the security requirement
(and maximum data availability) is assured by Theorem 2.

We would also like to guarantee that the security requirement function ρ is
satisfied for the cases when IL or IR are returned, i.e., that the knowledge pairs

88 A. Brodsky, L. Zhang, and S. Jajodia

L1 L'
1 L'

1+ s i z e o f (D) R1R'
1R'

1- s i z e o f (D)

v v

s i z e o f (D)

(A) (B) (C)

Fig. 2.

(IL, ν′) or (IR, ν′′), respectively, satisfy ρ. For these cases, ν′ and ν′′ can be
computed as follows:

ν′(x) =
{

λ′ L ≤ x < L′

λ′(1 − ρ(x − L′)) L′ ≤ x ≤ L′ + l0

ν′′(x) =
{

λ′′ρ(x − R′ + l0) R′ − l0 ≤ x ≤ R′

λ′′ R′ < x ≤ R

where λ′, λ′′ can be determined by solving the following equations:

∫ L′+l0

L

ν′(x)dx = 1,

∫ R

R′−l0

ν′′(x)dx = 1

To illustrate, Figures 2 (B) and (C) show the correlated PDF when the returned
answer is either IL or IR, respectively, w.r.t. to the security requirement function
ρ shown in (A).

To avoid the complexity to compute the least L′ and the greatest R′ that
guarantee satisfaction of ρ by both (IL, ν′) and (IR, ν′′), we provide next common
bounds for L′ and R′ for any possible security requirement function ρ.

Lemma 2. For any security requirement function ρ:

(1) if L′ ≥ L + 2 × l0, (IL, ν′) satisfies ρ;
(2) if R′ ≤ R − 2 × l0, (IR, ν′′) satisfies ρ.

Proof. It is sufficient to show that for any security function ρ : D → [0, 1]
the following holds: ∀x ∈ D, ρ(x) ≥ x

2l0
. For x ∈ [0, l0/2], it is clear that the

inequality above is true. If ∃x′ ∈ (l0/2, l0] such that the above inequality is not
true, we have ρ(D) ≤ ρ(x)+ρ(D−x) ≤ 2ρ(x) < 1. This contradicts the definition
of the security requirement function, which completes the proof. ��

This leads to Algorithm 2 given next.

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 89

Algorithm 2
– Input: (1) the security requirement function ρ which is continuous from right,

the domain of ρ D = [0, l0]; (2) the true value v of x; (3) an interval [L, R]
within which x is uniformly distributed, where R − L ≥ 5l0.

– Output: An interval I = [vl, vr].
– Process:

(1) Construct a knowledge pair (I ′, ν′) using the process in the proof of
Theorem 1.

(2) Randomly select a value v′ from I ′ = [0, l0] with the PDF ν′.
(3) Let vl = v − v′, vr = vl + l0.
(4) If vl < L + 2l0, then vl = L and vr = L + 3l0.
(5) If vr > R − 2l0, then vr = R and vl = R − 3l0.
(4) Output I = [vl, vr].

Theorem 3. (1) For any interval I = [vl, vr] returned by Algorithm 2, the cor-
responding knowledge pair (I, ν) satisfies the security requirement function ρ; (2)
if I ⊆ [L+2l0, R−2l0], then (I, ν) provides the maximum data availability w.r.t.
ρ; and (3) The probability that an interval I = [vl, vr] returned by Algorithm 2
is contained in [L + 2l0, R − 2l0] is greater than R−L−6l0

R−L .

The proof of Theorem 3 can be easily obtained from Theorem 2 and Lemma 2.

3.3 Pre-Disclosure Algorithm for Different Original Distribution

Until now, we have made the assumption that the database variable x is uni-
formly distributed on [L, R]. One way to relax this assumption and deal with an-
other distribution is to transform it into a new conditional uniform
distribution.

Intuitively, the idea is this: the system will use an algorithm, which we call
pre-disclosure algorithm to disclose some information about x before an approx-
imate query view is computed. The output will be an interval [Lp, Rp] that con-
tains x. The derived knowledge pair will be ([Lp, Rp], μ0) where μ0 is a uniform
distribution over [Lp, Rp].

To demonstrate the idea, we provide a pre-disclosure algorithm for the fol-
lowing specific setting depicted in Figure 3 A. It shows a possible PDF μ1 where
∀0 ≤ x ≤ k0, μ1(x) = x

k0
and ∀k0 ≤ x ≤ 2k0, μ1(x) = 1 − (x−k0)

k0
. For this

μ1, we construct a pre-disclosure Algorithm 3 (which uses Figure 3 (B) in its
description):

Algorithm 3
– Input: the above PDF μ1 over [0, 2k0], v ∈ [L, R].
– Output: An interval [Lp, Rp].
– Process:

(1) Construct four line segments AB, AC, BD, CD, where:
AB : 1 − μ(x), 0 ≤ x ≤ k0

AC : 1, 0 ≤ x ≤ k0

90 A. Brodsky, L. Zhang, and S. Jajodia

o 2 k 0 k 0 o

A

B

C

D
v

E

F

(v , y)
G H

Lp Rp

(A) (B)

1/k0

x x

Fig. 3.

CD : μ(x), k0 ≤ x ≤ 2k0

BD : 0, k0 ≤ x ≤ 2k0

(2) Let E be the intersection point of AC and x = v. Let F be the intersec-
tion point of AB and x = v.

(3) Random select a point (v, y) from line segment EF with uniform distri-
bution. Draw a line μ(x) = y that intersects AB at G, intersects CD at
H .

(3) Let Lp be the x-coordinate of G and Rp the x-coordinate of H .
(4) Output I = [Lp, Rp].

Theorem 4. For any interval I ′ = [Lp, Rp] returned by Algorithm 3, and the
corresponding knowledge pair (I ′, μ′), μ′ is the uniform distribution over [Lp, Rp].

Proof. ∀v ∈ I ′

μ′(v) =

1
μ(v)

μ(v)
∫ Rp

Lp

1
μ(s)

μ(s)ds

= 1∫ Rp

Lp

1ds

= 1
k0

�
To deal with non-uniform distribution, a pre-disclosure algorithm can be used
to produce an output interval [Lp, Rp] within which x is uniformly distributed.
Then, Algorithm 2 can be applied using this interval as the input interval [L, R].

Corollary 1. Let lmin be the minimum size of the possible output interval of
a pre-disclosure algorithm. Then, for combined application of a pre-disclosure
algorithm followed by Algorithm 2, the probability that the resulting knowledge
pair will provide maximum data availability w.r.t. ρ is greater than lmin−6l0

lmin
.

3.4 Independent Multi-dimensional Case

Consider the multi-dimensional case, where a database that consists of n vari-
ables x1, x2, . . . , xn. We assume here that the query views q1, . . . , qn are the

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 91

variables x1, x2, . . . , xn, respectively, and the corresponding security requirement
functions are ρ1, . . . , ρn. In this case, a knowledge pair (I, ν) is n-dimensional,
i.e., I ⊆ Rn and ν is a PDF over I. Consider one-dimensional projections
(Ii, νi), i = 1, . . . , n, of (I, ν), which can be derived as follows:

νi(vi) =
∫

In

. . .

∫

I1

ν(v1, v2, . . . , vn)dv1 . . . dvi−1dvi+1 . . . dvn

where I1, . . . , In are projections of I on x1, . . . , xn. The notion of maximum data
availability is a straightforward extension of the one-dimensional case, as follows.

Definition 5. We say that (I, ν) provides the maximum data availability w.r.t.
the security requirement functions ρ1, ρ2, . . . , ρn if:

(1) The derived knowledge pair (Ii, νi) satisfies ρi for any 1 ≤ i ≤ n, and
(2) For any other knowledge pair (I ′, ν′) that satisfies (1), we have that: for any

1 ≤ i ≤ n, the derived knowledge pair (Ii, νi) provides better data availability
than the derived knowledge pair (I ′i , ν

′
i).

If we assume that the query views x1, . . . , xn are independent of each other
and uniformly distributed, we can just apply the Algorithm 2 to come with
the an interval Ii for each query view, and the corresponding knowledge pair
(Ii, νi). Clearly, all security requirement functions are satisfied. Consider the n-
dimensional knowledge pair (I, ν), where I = I1× . . . × In and ν is the product
of ν1, . . . , νn. It is easy to prove that if I is within the original multi-dimensional
rectangle, then it provides maximum data availability w.r.t. ρ1, . . . , ρn. More-
over, the probability of this condition being satisfied is greater than

∏n
i=1

R−L−6li
R−L .

Similarly, a pre-disclosure algorithms can be used to deal with situations when
the original database instance is not uniformly distributed.

4 Dependent Multi-dimensional Case

The situation is more complex when query views can be linear combinations
of database variables x1, . . . , xn. To understand key ideas of this general case,
we consider here a restricted setting where a numeric database consists of two
variables x1, x2 and query views are x1, x2 and x3 = x1 + x2. We assume here
that x1 and x2 are each uniformly distributed over [L, R] ⊂ R and mutually
independent.

Here the security requirement functions ρ1(l) = l/l1, (0 ≤ l ≤ l1) for x1,
ρ2(l) = l/l2, (0 ≤ l ≤ l2) for x2, and ρ3(l) = l/l3, (0 ≤ l ≤ l3) for x3. Next,
we show that, under certain conditions, we still are able to provide the maxi-
mum data availability for query views x1, x2, x3 w.r.t. their security requirement
functions.

Theorem 5. Let l3 = λ1
λ2

(l1 + l2), where λ1, λ2 ∈ N+ and λ1 ≤ λ2. There exists
a knowledge pair (I, ν), where I = [0, L1] × [0, L2] in R2, and ν is a PDF over
I, that provides the maximum data availability w.r.t. ρ1, ρ2, ρ3.

92 A. Brodsky, L. Zhang, and S. Jajodia

Proof. We prove the theorem by induction, starting with the case when λ1 = λ2.
As shown in Figure 4 (A), we can construct a knowledge pair (I, ν) for (x1, x2)
such that I is a 2-dimensional rectangle defined by [0, l1] and [0, l2], and ν
is a uniform distribution over the diagonal AB. Thus we have three derived
knowledge pairs for query views x1, x2, x3 which we call Basic 3 of the specific
l1, l2, l3.

– (I1, ν1) for x1: I1 = [0, l1], ν1 is a uniform distribution over I1.
– (I2, ν2) for x2: I2 = [0, l2], ν2 is a uniform distribution over I2.
– (I3, ν3) for x3: I3 = [12 (l1 + l2) − 1

2 l3,
1
2 (l1 + l2) + 1

2 l3], ν3 is a uniform
distribution over I3.

Note that here l3 = l1 + l2 implies that I3 = [0, l1 + l2]. Clearly, in a Basic 3, the
data availability function of each (Ii, νi) is identical to xi’s security requirement
function. Then, by Theorem 1, the claim of Theorem 5 holds for this case.

l
1

l 2A

B

x1

x2

(A)

l
1

l 2

x1

x2

(B)

I ' '

I '

l
1

l 2

x1

x2

(C)

I '

I ' '

I ' '

Fig. 4.

Next we prove that: If for any λ1, λ2 such that λ1 < λ2 and λ1 +λ2 < k, there
exists a knowledge pair (I, ν) that derives a Basic 3 of l1, l2, l3 = λ1

λ2
(l1 + l2),

then for any λ1, λ2 such that λ1 < λ2 and λ1 + λ2 = k, there exists a knowledge
pair (I, ν) that derives a Basic 3 of l1, l2, l3 = λ1

λ2
(l1 + l2).

– If λ1 ≤ �λ2/2�, let λ′ = �λ2/2� and λ′′ = λ2 − �λ2/2�. Then, λ1 ≤ λ′,
λ1 ≤ λ′′ and λ′ + λ1 ≤ λ′′ + λ1 < k. Thus, based on the assumption, there
exist knowledge pairs (I ′, ν′) and (I ′′, ν′′) such that they derive a Basic 3 of
l1, l2,

λ1
λ′ (l1 + l2) and a Basic 3 of l1, l2,

λ1
λ′′ (l1 + l2), respectively.

Construct a new knowledge pair (I, ν) based on ”size-reduced” (I ′, ν′) and
(I ′′, ν′′) as shown in Figure 4 (B), as follows.

• I is the rectangle defined by [0, l1] and [0, l2].
• ∀(y1, y2) ∈ I:

ν(y1, y2) =

⎧
⎪⎨

⎪⎩

λ′

λ2
ν′(λ2

λ′ (y1 − λ′′

λ2
l1), λ2

λ′ y2) λ′′

λ2
l1 ≤ y1 ≤ l1, 0 ≤ y2 ≤ λ′

λ2
l2

λ′′

λ2
ν′′(λ2

λ′′ y1,
λ2
λ′′ (y2 − λ′

λ2
l1)) 0 ≤ y1 ≤ λ′′

λ2
l1,

λ′

λ2
l2 ≤ y2 ≤ l2

0 else

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 93

It is easy to show that (I, ν) derives, for x1, x2, x3, a Basic 3 of l1, l2, l3 =
λ1
λ2

(l1 + l2). 3

– If �λ2/2� < λ1 < λ2, let λ′ = λ2 − λ1 and λ′′ = λ2 − λ′ = 2λ1 − λ2. Then,
λ′ + λ2 < k and λ′′ + λ2 < k. Thus, based on the assumption, there exist
knowledge pairs (I ′, ν′) and (I ′′, ν′′), such that they derive a Basic 3 of
l1, l2,

λ′

λ2
(l1 + l2) and a Basic 3 of l1, l2,

λ′′

λ2
(l1 + l2), respectively.

Construct a new knowledge pair (I, ν) based on ”size-reduced” (I ′, ν′) and
(I ′′, ν′′) as shown in Figure 4 (C).

• I is the rectangle defined by [0, l1] and [0, l2].
• ∀(y1, y2) ∈ I:

ν(y1, y2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′

λ2
ν′(y1, y2) (1

2 − λ′

2λ2
)(l1 + l2) ≤ y1 + y2

≤ (1
2 + λ′

2λ2
)(l1 + l2)

λ′′

2λ2
ν′′(2y1, 2y2) 0 ≤ y1 ≤ 1

2 l1, 0 ≤ y2 ≤ 1
2 l2,

(1
4 − λ′′

4λ2
)(l1 + l2) ≤ y1 + y2

< (1
4 + λ′′

4λ2
)(l1 + l2)

λ′′

2λ2
ν′′(2(y1 − 1

2 l1), 2(y2 − 1
2 l2)) 1

2 l1 ≤ y1 ≤ l1,
1
2 l2 ≤ y2 ≤ l2,

(3
4 − λ′′

4λ2
)(l1 + l2) < y1 + y2

≤ (3
4 + λ′′

4λ2
)(l1 + l2)

0 else

It is easy to show that (I, ν) derives, for x1, x2, x3, a Basic 3 of l1, l2, l3 =
λ1
λ2

(l1 + l2). 3

This completes the inductive proof.

Figure 5 graphically depicts a knowledge pair (I, ν) for the case of l3 =
2
3 (l1 + l2). In it, I is the rectangle [0, l1] × [0, l2]. The PDF ν corresponds to
the uniform distribution over the set of points on the bold lines (and is zero
elsewhere).

Note that, with the construction method of (I, ν) in Theorem.5, we then can
construct a similar random disclosure algorithm as Algorithm 2:

Algorithm 4
– Input: (1) The security requirement functions ρ1, ρ2, ρ3 and their domain

sizes l1, l2, l3; (2) a database instance (v1, v2), (3) a rectangle [L, R] × [L, R]
within which (x1, x2) is uniformly distributed.

– Output: Intervals I1 = [v1l, v1r], I2 = [v2l, v2r], I3 = [v3l, v3r] for the three
query views.

– Process:
(1) Construct a knowledge pair (I, ν) using the process in the proof of The-

orem 5, where I = [0, l1] × [0, l2].
(2) Randomly select a point (v′1, v

′
2) from I using the PDF ν.

3 Details can be found in full version of this paper.

94 A. Brodsky, L. Zhang, and S. Jajodia

x1

x2

l 1

l 2o

Fig. 5.

(3) Let v1l = v1 − v′1, v1r = v1l + l1, v2l = v2 − v′2, v2r = v2l + l2, v3l =
(v1l + v1r + v2l + v2r − l3)/2, v3r = v3l + l3, signal = 1.

(4) If v1l < L + 2l1, then v1l = L, v1r = L + 3l1, signal = 0.
(5) If v1r > R − 2l1, then v1r = R, v1l = R − 3l1, signal = 0.
(6) If v2l < L + 2l2, then v1l = L, v1r = L + 3l2, signal = 0.
(7) If v2r > R − 2l2, then v1r = R, v1l = R − 3l2, signal = 0.
(8) If signal = 0, then v3l = (v1l + v2l), v3r = v1r + v2r.
(9) Output I1 = [v1l, v1r], I2 = [v2l, v2r], I3 = [v3l, v3r].

Also the following theorem will be straightforward.

Theorem 6. (1) For any rectangle I returned by Algorithm 4, the correspond-
ing knowledge pair (I, ν) satisfies the security requirement functions ρ1, ρ2 and
ρ3; (2) if I is contained in [0, l1] × [0, l2], then (I, ν) provides the maximum
data availability w.r.t. ρ1, ρ2, ρ3; and (3) The probability of this condition being
satisfied is greater than (R−L−6l1−6l2)

2

(R−L)2 .

5 Related Work and Conclusions

Some additional comments on related work are as follows. For the micro-data
disclosure problem, the [12,13] were first to provide an implicit measure of uncer-
tainty (k-anonymity). The work [11] introduced the notion of l-diversity, which
refined the notion of k-anonymity. The work [15] further refined the notion of
uncertainty by defining a measure of distance between sensitive values.

For the information disclosure in numeric databases, [10] defined a measure of
imprecision by giving a interval, which can be regarded as a confidence interval
with the probability of 1. The work [4] defined a more general notion of impre-
cision based on volume. The work [9] considered both intervals and conditional
probabilities for privacy protection in the context of online auditing.

In data mining, the works [2,6] adopted the idea of confidence intervals to de-
fine a privacy breach. The work [1] used information theory measures to quantify

Answering Queries Based on Imprecision and Uncertainty Trade-Offs 95

disclosed information and define a privacy breach. The work [7] refined this idea
by defining privacy-sensitive properties.

To conclude, this paper is the first, to the best of our knowledge, to in-
troduce the notion of security requirement functions, to accurately reflect the
imprecision-uncertainty trade-offs. It provided an initial study of random disclo-
sure algorithms that satisfy security requirement functions, and provide, under
certain conditions, the maximum data availability. For future work we plan to
extend the results to the unrestricted dependent case, as well as to discrete
databases. Finally, we would like to thank anonymous reviewers for their useful
comments and suggestions.

References

1. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserv-
ing data mining algorithms. In: Proceedings of the 20th Symposium on Principles
of Database Systems (2001)

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD, pp. 439–
450 (2000)

3. Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for rela-
tional databases. IEEE Transactions on Knowledge and Data Engineering 9(1),
85–101 (1997)

4. Brodsky, A., Farkas, C., Wijesekera, D., Wang, X.S.: Constraints, inference chan-
nels and secure databases. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp.
98–113. Springer, Heidelberg (2000)

5. Bell, D.E., Lapadula, L.J.: Secure computer systems: Mathematical foundations
and model. The Mitre Corporation (1975)

6. Dwork, C., Nissim, K.: Privacy-preserving data mining on vertically partitioned
databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544.
Springer, Heidelberg (2004)

7. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of
association rules. In: Proceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery in Databases and DataMining, pp. 217–228. ACM
Press, New York (2002)

8. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

9. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: PODS, pp. 118–
127 (2005)

10. Li, Y., Wang, L., Wang, X., Jajodia, S.: Auditing interval-based inference. In: Pro-
ceedings of the 14th International Conference on Advanced Information Systems
Engineering, pp. 553–567 (2002)

11. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. In: ICDE (2006)

12. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. (2001)

13. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, CMU, SRI (1998)

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. IEEE Computer, 38–47 (1996)

15. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD (2006)

Architecture for Data Collection

in Database Intrusion Detection Systems

Xin Jin and Sylvia L. Osborn

Dept. of Computer Science,
The University of Western Ontario,

London, Ontario, Canada
{xjin5,sylvia}@springer.com

Abstract. A database intrusion detection system (IDS) is a newdatabase
security mechanism to guard data, the most valuable assets of an organiza-
tion.Toprovide the intrusion detectionmodulewith relevant audit data for
further analysis, an effective data collection method is essential. Currently,
very little work has been done on the data acquisition mechanisms tailored
to the needs of database IDSs. Most researchers use the native database
auditing functionality, which excludes privileged users such as database
administrators (DBAs) from being monitored. In this paper, we present a
new approach to data collection for database IDSs by situating data col-
lecting sensors on the database server and having the data transmitted to
the audit server on a physically different site for further processing. This
approach can guarantee that behavior of both average users and privileged
users are monitored for signs of intrusion.

Keywords: intrusion detection, database IDS, database security.

1 Introduction

Recently, database intrusion detection has attracted a lot of researchers’ at-
tention [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. A database-specific intrusion detection
system (IDS) can serve as an additional layer of database security, which applies
the ideas and results from generic intrusion detection research to detect misuses
targeted towards database systems.

An IDS that monitors for intrusive behavior needs to collect data on the
dynamic state of the system. These data are then fed to the server for analysis of
any signs of intrusion. These security data can take the form of network packets,
audit logs of operating systems or SQL statements executed by different users
in the database systems scenario.

Currently, there are essentially two approaches to data acquisition in database
IDSs. One is to simply use the auditing functionality provided by the database
management system (DBMS); the other is to tap into the communications chan-
nel between web-based applications and the back-end database server to inter-
cept interesting data.

The former approach naturally comes to mind because the DBMS maintains
all the records and statistics related to database performance. The data collection

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Architecture for Data Collection in Database Intrusion Detection Systems 97

module thus has access to the entire context of the SQL stream, the very type
of data most database IDSs inspect for anomalies [1,2,3,4,11,12,13]. However,
this approach fails to take into account all the users. It is especially insufficient
in exerting control over privileged users like database administrators (DBAs),
who, as the ultimate owner of the data, can actually delete and modify the
audit logs and even turn off the auditing functionality provided by the DBMS
altogether. These privileged users, if corrupt, can potentially cause more damage
than average users. In fact, there is an increasing recognition that a significant
threat comes from inside, not outside, the organization [15,16,17].

The second approach has only been applied to MySQL, an open-source DBMS,
where the library responsible for communication with the database server is mod-
ified in order to intercept the interesting SQL statements. For the large majority
of DBMSs, especially commercial DBMSs, however, modifying the source is not
an option.

In this paper, we propose a new approach for data collection in database
IDSs by situating data collecting sensors on the database server and having the
data transmitted to the audit server on a physically different site for further
processing. This mechanism can exert control over all users without requiring
modification to any existing DBMS functionalities.

The rest of the paper is organized as follows. Section 2 briefly introduces
database intrusion detection systems. Section 3 describes the three data acquisi-
tion methods used by most IDSs. In Section 4, the advantages and disadvantages
of each data acquisition method are examined in the database IDS scenario . In
Section 5, we present our approach for data collection. Section 6 outlines our
future research plans.

2 Database Intrusion Detection

2.1 Intrusion Detection and Types of IDSs

An intrusion is defined as “any set of actions that attempt to compromise the
integrity, confidentiality or availability of a resource” [18]. This includes a delib-
erate unauthorized attempt to access or manipulate the information or render
a system unreliable or unusable. Intrusion detection is thus defined as the pro-
cess of monitoring the events occurring in a computer system or network and
analyzing them for signs of intrusion [19].

Intrusion detection research has been on-going for more than 20 years. How-
ever, previous efforts were largely focused on network-based intrusion detection
and host-based intrusion detection [1]. Network-based intrusion detection typ-
ically works by having one or more sensors on the network monitor network
traffic in an attempt to discover if an intruder is trying to break into the system.
Host-based intrusion detection, on the other hand, works by monitoring the log
files situated in the hosts.

In terms of intrusion detection models, all IDSs are based either on signatures
or anomaly models [2]. Anomaly-based intrusion detection works by defining
the normal usage behavior patterns to identify intrusions. The normal usage

98 X. Jin and S.L. Osborn

patterns can be constructed from statistical measures of the system features, for
instance, the CPU usage and I/O activities by a particular user or an application.
Anomaly-based intrusion detection mainly has two modes: a training mode and
a detection mode. In the training mode, a normal profile is created by exposing
the sensor to non-exploit traffic, while in the detection mode, some distance
algorithms are used to compare new data against the normal profile and any
distance which crosses some threshold is considered to be an anomaly. Anomaly-
based intrusion detection is generally subject to high false positives.

Misuse-based intrusion detection, also known as signature-based intrusion
detection, uses well-defined patterns of the attack that exploit weaknesses in
systems and applications to identify the intrusions. These explicit patterns, or
signatures, are characterized in advance and used to match against the user be-
havior to detect intrusions. This type of IDSs generally have high false negatives
and are not effective against new types of attacks because they can recognize only
the ones that have been previously identified and have had signatures written
for them.

2.2 Database IDSs

In spite of the significant role of databases in information systems, there is very
limited work on intrusion detection in database systems. However, problems
posed by intrusions directed to database systems cannot be solved by traditional
database security mechanisms or IDSs at the network or host level.

First, as the focus in database intrusion detection is to continuously monitor
some dynamic behavior characteristics of the database system to determine if
an intrusion has occurred, static security mechanisms such as data encryption,
firewalls and virus protection schemes cannot provide this functionality. Nei-
ther can this be resolved by traditional database security mechanisms such as
authorization, access control, integrity control, etc.

Second, neither network-based nor host-based IDSs can detect malicious be-
havior from users at the database level, or more generally, the application level,
because they do not work at the application layer. Specifically, audits at the
system or network level are not suited for intrusion detection at the information
level because the semantics of the applications are not reflected in the low-level
audit logs [4]. For instance, host-based intrusion detection fails to detect any in-
trusion directed at databases because users who seek to gain database privileges
will likely be invisible at the operating systems level, and thus invisible to the
host-based intrusion detectors. Therefore, SQL injection [2] and other SQL-based
attacks targeted at databases cannot be effectively detected by network-based
or host-based IDSs.

In addition, host- or network-based IDSs are mainly focused on detecting
external intrusions as opposed to internal intruders, while, as mentioned earlier,
legitimate users who abuse their privileges are the primary security threat in
database systems.

Therefore, intrusion detection techniques and models specially designed for
databases are becoming an imperative need [1,8,12,14,7]. Ideally, the

Architecture for Data Collection in Database Intrusion Detection Systems 99

database-specific IDS should work as a complementary mechanism to the ex-
isting network-based and host-based intrusion detection systems rather than
replacing them.

3 Related Work

Although some research has been done with respect to the data collection mech-
anisms of generic IDSs [20,21,22], little work has been done focusing on the data
acquisition methods tailored to the needs of database IDSs. This research is im-
portant because incomplete, incorrect data or data with a significant delay could
lead to erroneous results from the IDS, either generating unbearably high false
alarms or giving its users a false sense of security.

3.1 Data Collection Methods for Generic IDSs

Three different types of data acquisition methods for IDSs are mentioned in
[20], namely Interception, Instrumentation of a Third Party, and Instrumented
Application.

Intrusion detection systems which monitor applications by interception are
by far the most common and have the advantage of being easy to deploy. Most
network-based intrusion detection systems make use of this method. Existing
systems do not need to be modified or reconfigured, and since their monitoring
is passive, these IDSs are unobtrusive. However, encrypted traffic may be a
problem [21].

Instrumentation of a third party, or the host-based approach, has the obvious
advantage of being able to access unencrypted data and system resources such as
operating system audit trails and application logs. However, a number of moni-
tors need to be installed instead of just one, thus incurring more administrative
overhead. Also, the user could experience a performance penalty as the moni-
tor is on the same host as the application [20]. Furthermore, most monitors at
the OS level cannot detect attacks directed at the lower network protocol levels
because network information typically does not become available in the audit
event stream until it has reached the higher protocol levels.

Instrumented Application, or collecting data directly from the application
that is being monitored, also has the advantage of having access to unencrypted
information. In addition, this method can take advantage of the application’s
domain knowledge to select the most relevant data to be collected. However,
the application is required to provide an interface to successfully integrate a
monitor into the application, otherwise modifications to the application itself
may be required. As a result, the development efforts could be significant. This
method may also impact the performance when the monitor module is running
on the same host as the monitored service.

3.2 Existing Database IDSs and Their Data Collection Methods

Interception with Modification to the DBMS. Valeur et al. present an
anomaly-based IDS [11] for the detection of attacks exploiting vulnerabilities in

100 X. Jin and S.L. Osborn

web-based applications to compromise a back-end database. The IDS taps into
the communication channel between web-based applications and the database
server. SQL queries performed by the applications are intercepted and sent to
the IDS for analysis.

This data collection method might look like Interception described in section
3.1, but it relies on modifying the library of MySQL (an open-source database)
that is responsible for the communications between the two parties. Thus, this
approach cannot be generalized for commercial databases such as MS SQL
Server, Oracle, etc.

Built-in DBMS Auditing. Most database IDSs in the literature use the native
auditing functionality provided by the DBMS to collect audit data. This includes
using built-in auditing tools of the DBMS, manipulating the database log files
and invoking DBMS-specific utilities. This method is, in fact, a special case of
Instrumenting Applications discussed in section 3.1.

DEMIDS, an anomaly database IDS, is presented by Chung et al. in [5]. It
assumes that the access patterns of users typically form some working scopes
and it takes into account the domain knowledge about the data structures and
semantics encoded in a database schema. The audit data of users are collected by
monitoring their queries through the auditing functionality of the DBMS. Spalka
et al. [13] adopts a hybrid approach to intrusion detection in relational databases.
The IDS consists of three components: an anomaly detector for the database, an
anomaly detector for the user interaction, and a misuse detector for the database
scheme. User interaction data are collected with the auditing tools of the DBMS.
Bertino et al. discuss an anomaly detector for RBAC-administered databases in
[12]. The proposed approach is based on mining database traces stored in log
files and it couples the IDS with Role Based Access Control (RBAC) [23,24] to
detect role-intruders. The IDS uses the database log files to form role profiles of
different granularities to identify user behavior.

Utilities such as SQL trace provided by many database vendors are used by
several researchers in their database intrusion detection mechanisms to collect
and view database events. DIDAFIT, a misuse-based database IDS proposed in
[1], detects anomalous database accesses by characterizing legitimate accesses
through fingerprinting executed SQL statements using regular expressions. Ra-
masubramanian and Kannan discuss in [3] a hybrid database intrusion preven-
tion system using a combination of both statistical anomaly prevention and rule
based misuse prevention. Both of these IDSs use the sql trace utility provided
by Oracle to capture operations in a database session of a user.

4 Advantages and Disadvantages of Built-in DBMS
Auditing

Since the large majority of existing database IDSs use in some degree the built-
in DBMS auditing functionality, it is worth investigating the advantages and
disadvantages of this method.

Architecture for Data Collection in Database Intrusion Detection Systems 101

4.1 Advantages

Easy to Deploy. Using the “out-of-the-box” auditing functionalities of the
DBMS does not involve much development effort in terms of data collection. The
sql trace functionality, for instance, is supported by many commercial databases
such as MS SQL Server and Oracle. It is an interface made available through
extended stored procedures. By turning on this utility, events can be collected
and viewed and even channeled to a designated file.

Accessible to more Comprehensive Information. Native auditing func-
tionality can be extremely powerful. Oracle, for instance, provides exhaustive
native audit functionality capable of monitoring and logging practically any
database activity.

4.2 Disadvantages

Impact on Performance. The sql trace utility, for instance, is designed to
assess the efficiency of the SQL statements an application runs and optimizing
database performance. It is not meant to be used on an on-going basis, especially
on a production system, because when enabled it can consume substantial mem-
ory, CPU cycles as well as disk space. It is even worse when the native auditing
functionality at the database level is enabled because it creates a bottleneck that
significantly impacts database performance.

No Intelligence in Certain Native Auditing. Sql trace utility can either
be enabled or disabled. There is no built-in intelligence for data collection and
this utility generates a large amount of unwanted audit data for the intrusion
detection module.

Complex and Hard to Meet Individual Corporate Auditing Require-
ments. Oracle Database Server, an auditing utility at the database level, is
usually disabled because it takes a significant amount of configuration effort and
this must be done individually for each database server. Even when the native
auditing functionality is enabled, the logged audit events are rarely reviewed
because the data are too voluminous to be useful.

Control of the Database Implies Full Control of the Auditing Func-
tionality. There is no way to stop database administrators from deleting or
truncating the audit trail, preventing them from changing the auditing configu-
ration or from disabling the auditing utility altogether. Therefore, no separation
of duties is provided, which is the key to the confidentiality, integrity and assur-
ance of any computer system.

5 Proposed Approach to Data Collection in Database
IDS

To solve the problems discussed above, we propose a novel approach to data
collection in database IDSs.

102 X. Jin and S.L. Osborn

Fig. 1. Architecture of the Proposed Method

5.1 Architecture

The audit data we are interested in collecting are requests submitted by differ-
ent users to the database server. Here, we distinguish two types of users: local
users and remote users. Typical local users are DBAs performing administra-
tive duties on the same machine where the database server resides. Examples
of remote users include average database users interacting with the database
through applications or utilities, as well as DBAs performing remote database
administration through a network connection. Since requests submitted by dif-
ferent types of users go through different channels, separate agents dealing with
data collection for each channel are required.

The proposed architecture consists of three major components: the host-based
agent, the network-based agent, and the audit server (Fig 1). The network-based
agent is responsible for collecting requests submitted by remote users through the
network and the host-based agent deals with requests that do not go through
the network channel. The audit server is the locus where raw audit data are
processed, attempts of intrusions are detected and appropriate actions are taken.

The flows of interaction are as follows:

(1) Requests issued by remote users are captured by the network-based agent;
(2) Requests issued by local users are captured by the host-based agent;
(3) Raw audit data (in the form of users’ requests) collected by the host-based

agent are sent to the audit server; the audit server checks if the host-based agent
is still up and running;

(4) Raw audit data collected by the network-based agent are sent to the audit
server; the audit server checks if the network-based agent is still up and running;

Architecture for Data Collection in Database Intrusion Detection Systems 103

Fig. 2. Working of the Network-based Agent

5.2 Initial Implementation

We have experimented with the proposed architecture using Oracle 10.2.0.1 with
more implementation details to follow. Although the current implementation is
still primitive, the proposed approach has been proved to work.

The network-based agent and the host-based agent are both installed on the
database server and run as independent services on Windows XP. In this way,
they require system administration instead of database administration, providing
a separation of duties of a system administrator from a DBA.

The network-based agent captures requests submitted by remote users through
the network to the database server and then forwards these data to the audit
server. The network-based agent works as follows (Fig 2). First, raw data are re-
ceived by the Network Interface Card (NIC) on the database server. Next, raw
network packets are acquired by calling the functions provided by the Network
Driver Interface Specification (NDIS) Driver. Interesting data are then obtained
by filtering out irrelevant data packets such as those having different protocol en-
capsulations.

The host-based agent captures requests that do not go through the network.
For instance, in Oracle, this can be achieved by reading the executed SQL state-
ments from the System Global Area [25]. The host-based agent requires DBA
privilege so that procedures and functions associated with querying the SQL
area in the SGA can be successfully executed. Although querying the SQL area
can be resource intensive and could affect the performance on a critical produc-
tion system, this kind of monitoring is only done on local users who are most
likely the small handful of DBAs within the organization. Therefore, impact on
performance is significantly mitigated.

The audit server checks if the network-based agent and the host-based agent
are still up and running by sending a message requiring confirmation from time
to time. If either of them is disabled or removed from the database server for

104 X. Jin and S.L. Osborn

some reason, the corresponding response will not be received. As a result, an
alarm will be triggered to alert the auditor.

To prevent intruders from hijacking or modifying the audit data transmit-
ted to the audit server, communications channels between the network-based
(host-based) agent and the audit server can be secured by encrypting all the
traffic between them.

5.3 Advantages

Consistent Control over all Users. Requests from local users can be col-
lected by the network-based agent and those from remote users can be collected
by the host-based agent. More importantly, activities of privileged users such as
DBAs can now be monitored along with those of average users. Thus, risk of
insider threat is considerably reduced.

Minimum Impact on Database Performance. Compared to using native
auditing functionality of the DBMS for data collection, the proposed method
causes only minimum performance overhead. Data collected at the database
server are sent to the audit server after a brief data preprocessing, which filters
out irrelevant data and transforms the raw data into formats understandable
by the auditing module. All the data analysis and intrusion detection work are
carried out on the dedicated audit server. As a result, little performance impact
on the database server is incurred, which is especially important in a production
environment. The audit server implemented on a separate server can even allow
real time analysis without impacting the source database.

Separation of Duties. This data collection module provides a way of sepa-
ration of duties because the network-based agent and the host-based agent in-
stalled on the database server work as services running on the host machine. The
system administrator is responsible for keeping these services up and running.
DBAs have no control over these services. In this way, system administration
instead of database administration is required, enforcing a separation of duties.

Non-obtrusiveness and Adaptiveness. Both the network-based agent and
the host-based agent work by passively intercepting data without interrupting
the normal run of the database system or enabling any native auditing func-
tionality of the DBMS. In addition, the proposed method does not require any
modification to the DBMS or the applications communicating with the DBMS.
Thus, it is relatively easy to adapt the data collection module to accommodate
various DBMSs without significant development effort.

Minimum Administration. The network-based agent and the host-based
agent responsible for data collection are only installed on the database server
rather than on each and every host running the DBMS as in traditional host-
based data collection. As a result, only negligible administrative work is involved
with the proposed approach.

Architecture for Data Collection in Database Intrusion Detection Systems 105

5.4 Discussion

Different data collection approaches for database IDSs arise in part from the
discrepancy among researchers on who should be responsible for detecting in-
trusions targeted at databases.

Some assume that DBAs should be monitoring suspicious behavior aside from
performing their usual tasks such as tuning the performance of the DBMS [7].
Then one naturally asks: who should monitor DBAs, who have already been
entrusted with an organization’s most critical information?

Some discuss their approaches to database intrusion detection without pro-
viding an answer to this question. However, their data collection modules have
substantially reduced the likelihood that DBAs will be monitored as effectively
as average users [12,13,1].

Still some assume a security officer or a security administrator other than
the DBA better fits the job [5,26,4]. Even though their data collection modules
are insufficient in sustaining this claim, we believe this is a fair assumption
because it conforms to the concept of separation of duties, which is the key to
the confidentiality, integrity and assurance of any computer system.

6 Conclusion and Future Work

Database IDS is a relatively new topic and research done in this area is still
very limited. As in constructing a generic IDS, a data collection mechanism is
the first step. In this paper we discuss the data acquisition methods for generic
IDS and specifically how the data are collected in the database IDS scenario in
various research presented in the literature of database intrusion detection. The
advantages and drawbacks of current methods are discussed.

Finally, we present a novel framework for data collection tailored to the needs
of database IDSs to solve some of the difficulties encountered by previous research
in the field. A primitive version of the architecture has been implemented for
Oracle10.2.0.1.

As part of future work, we would like to implement a more sophisticated
version of the framework and do more benchmarking on its impact on the per-
formance of the database. Another direction for future research is to design a
specific database IDS that takes into account the features of the audit data col-
lected using the proposed approach. We are especially interested in applying
data mining techniques to the IDS to detect anomalous database activities from
both average users and privileged users.

References

1. Low, W.L., Lee, J., Teoh, P.: DIDAFIT: Detecting intrusions in databases through
fingerprinting transactions. In: ICEIS, pp. 121–128 (2002)

2. Rietta, F.S.: Application layer intrusion detection for SQL injection. In: Menezes,
R. (ed.) ACM Southeast Regional Conference, pp. 531–536. ACM Press, New York
(2006)

106 X. Jin and S.L. Osborn

3. Ramasubramanian, P., Kannan, A.: Intelligent multi-agent based database hybrid
intrusion prevention system. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)
ADBIS 2004. LNCS, vol. 3255, pp. 393–408. Springer, Heidelberg (2004)

4. Ramasubramanian, P., Kannan, A.: A genetic-algorithm based neural network
short-term forecasting framework for database intrusion prediction system. Soft
Comput. 10(8), 699–714 (2006)

5. Chung, C.Y., Gertz, M., Levitt, K.N.: DEMIDS: A misuse detection system for
database systems. In: IICIS, pp. 159–178 (1999)

6. Lee, S.Y., Low, W.L., Wong, Y.: Learning fingerprints for a database intrusion
detection system. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS
2002. LNCS, vol. 2502, Springer, Heidelberg (2002)

7. Lee, V., Stankovic, J., Son, S.: Intrusion detection in real-time database systems
via time signatures. In: Proceedings of the Sixth IEEE Real-Time Technology and
Applications Symposium (RTAS ’00), Washington - Brussels - Tokyo, pp. 124–133.
IEEE, Los Alamitos (2000)

8. Hu, Y., Panda, B.: Identification of malicious transactions in database systems. In:
IDEAS, pp. 329–335. IEEE Computer Society Press, Los Alamitos (2003)

9. Hu, Y., Panda, B.: A data mining approach for database intrusion detection. In:
Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M. (eds.) SAC, pp. 711–
716. ACM Press, New York (2004)

10. Mattsson, U.T.: A real-time intrusion prevention system for commercial enterprise
databases. In: Ascenso, J., Belo, C., Vasiu, L., Saramago, M., Coelhas, H. (eds.)
ICETE, pp. 275–280. INSTICC Press (2004)

11. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of
SQL attacks. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp.
123–140. Springer, Heidelberg (2005)

12. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in RBAC-
administered databases. In: ACSAC, pp. 170–182. IEEE Computer Society Press,
Los Alamitos (2005)

13. Spalka, A., Lehnhardt, J.: A comprehensive approach to anomaly detection in
relational databases. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applications
Security XIX. LNCS, vol. 3654, pp. 207–221. Springer, Heidelberg (2005)

14. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: VLDB,
pp. 143–154. Morgan Kaufmann, San Francisco (2002)

15. Ryutov, T., Neuman, B.C., Kim, D., Zhou, L.: Integrated access control and in-
trusion detection for web servers. In: 23th International Conference on Distributed
Computing Systems (23th ICDCS’2003). Providence, RI, pages 394-. IEEE Com-
puter Society Press, Los Alamitos (2003)

16. Spitzner, L.: Honeypots: Catching the insider threat. In: ACSAC, pp. 170–181.
IEEE Computer Society Press, Los Alamitos (2003)

17. Magklaras, G., Furnell, S.: Insider threat prediction tool: Evaluating the probability
of IT misuse. Computers & Security 21(1), 62–73 (2002)

18. Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network
level intrusion detection system. Technical report, University of New Mexico, De-
partment of Computer Science, August (1990)

19. Ajith, S.P.: Intrusion detection systems using decision trees and support vector
machines, URL: citeseer.ist.psu.edu/741190.html

20. Welz, M.G., Hutchison, A.: Interfacing trusted applications with intrusion detec-
tion systems. In: RAID ’00: Proceedings of the 4th International Symposium on
Recent Advances in Intrusion Detection, pp. 37–53. Springer, London (2001)

citeseer.ist.psu.edu/741190.html

Architecture for Data Collection in Database Intrusion Detection Systems 107

21. Almgren, M., Lindqvist, U.: Application-integrated data collection for security
monitoring. In: RAID ’00: Proceedings of the 4th International Symposium on
Recent Advances in Intrusion Detection, pp. 22–36. Springer, London, UK (2001)

22. Zamboni, D.: Data collection mechanisms for intrusion detection systems. Technical
report(05 March, 2000)

23. Nyanchama, M., Osborn, S.: The role graph model and conflict of interest. ACM
Transactions on Information and System Security 2(1), 3–33 (1999)

24. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 20(2), 38–47 (1996)

25. Modrakovic, M.: Reading and storing data directly from Oracle SGA using
ProC*/C code (2004), URL:
http://www.petefinnigan.com/Storing Data Directly From Oracle SGA.pdf

26. Mattsson, U.: A practical implementation of a real-time intrusion prevention sys-
tem for commercial enterprise databases. In: WSEAS, Copacabana, Rio de Janeiro,
Brazil (2004)

http://www.petefinnigan.com/Storing_Data_Directly_From_Oracle_SGA.pdf

Common Secure Index for Conjunctive

Keyword-Based Retrieval over Encrypted Data

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

{pwang,hwang,josef}@ics.mq.edu.au

Abstract. We consider the following problem: users in a dynamic group
store their encrypted documents on an untrusted server, and wish to re-
trieve documents containing some keywords without any loss of data con-
fidentiality. In this paper, we investigate common secure indices which
can make multi-users in a dynamic group to obtain securely the en-
crypted documents shared among the group members without
re-encrypting them. We give a formal definition of common secure index
for conjunctive keyword-based retrieval over encrypted data (CSI-CKR),
define the security requirement for CSI-CKR, and construct a CSI-CKR
based on dynamic accumulators, Paillier’s cryptosystem and blind sig-
natures. The security of proposed scheme is proved under strong RSA
and co-DDH assumptions.

Keywords: Common secure index, search on encrypted data, Paillier’s
cryptosystem.

1 Introduction

Storages and backups of clients’ data on remote untrusted servers are increas-
ingly outsourced to data warehouses, and privacy invasion incidents about
clients’ sensitive data, such as information leakage caused by server adminis-
trator, has been increased more and more. The typical way to preserve clients’
privacy is to store data in the form of ciphertext. It is important to build se-
cure indices which enable a legitimate user to search encrypted data without
decrypting them and revealing any information about the data to any other. In
the literature, there are a number of research works on this topic [1, 5, 8, 9, 13],
but the common setting of previous works is limited to a single-user. In realistic
environments, however, secret data may be shared by a group, so group setting
is more practical. Usually, the group may be dynamic, i.e., a person may join
and leave the group, which makes the design more challenging. A naive solution
will be to decrypt all data of the group, and re-encrypt them by a new group
key. But this increases a computational overhead. Recently, Park et al. [11] pro-
posed schemes for groups, which allow a user to obtain the encrypted documents
in a secure way without re-encrypting them. In this paper, we study searchable
common secure indices for groups and propose a new conjunctive keyword-based
retrieval scheme for multi-users.

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 108–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Common Secure Index for Conjunctive Keyword-Based Retrieval 109

Related Work. Song, Wagner, and Perrig [13] first introduced the notion of
searchable encryption. In their symmetric key setting, each word (or each pat-
tern) of a document is encrypted separately and extra information is embedded
into the ciphertext such that a search information (called trapdoor) can be pro-
vided to test whether a particular keyword is contained in a document. However,
the scheme needs computation linear in the size of each document, fails to deal
with compressed data, and is not secure against statistical analysis across en-
crypted data. These shortcomings were addressed by the subsequent work of Goh
[8], who presented a scheme using Bloom filters to build a secure index for each
file. Each keyword is processed using a pseudo-random function and then inserted
into a Bloom filter. The trapdoor consists of an indicator of that which bits in
the filter should be tested. Moreover, Goh formulated a security model for se-
cure indices known as semantic security against adaptive chosen keyword attack
(IND-CKA), which is the first formal notion of security defined for searchable
encryption. But, Goh’s scheme induces false positives inevitably and requires
that all parties share all keys. Golle et al. [9] first constructed two schemes for
conjunctive keyword search over encrypted data, which described three secure
games that capture IND-CKA. Unfortunately, in their first scheme, the overhead
transmission of the trapdoors is undesirable, and a large number (linear with re-
spect to keywords) of pairing computations are requires to perform a search on
every document; and their second construction is arguably unrealistic, particu-
larly for a large collection of documents. Based on secret sharing and bilinear
map for conjunctive keyword search, two more efficient schemes were proposed
in [1], but the size of the trapdoors it generated is still linear in the number of
documents being searched. Recently Boneh and Waters [5] developed a public-
key encryption scheme for conjunctive keyword search from a generalization of
anonymous identity based encryption. The scheme supports comparison queries
(such as greater-than) and general subset queries. Nevertheless, the setting of
all these schemes is limited to a single-user.

Based on Goh’s scheme [8], Park et al. [11] proposed search schemes for groups,
which can deal with membership changes without re-encrypting data. The main
idea is to use one-way hash chain in reverse order to generate group session
keys, encryption keys and index generation keys. In these schemes, all the group
members use identical secret keys to make secure indices and trapdoors, and a
set of new group keys must be generated for each session. Therefore, the schemes
bring a risk to the key management; and the size of a query would become larger
as the number of sessions increases. It should be noted that, if one of the leaving
members reveals her group key to the server, the server can decrypt all the
documents encrypted previously, because a user can know all of the previous
group keys by hashing the current group key repeatedly. Additionally, these
schemes are characterized by increased rate of false positives that are inherited
from Bloom filters. To the best of our knowledge, it is the first work on searchable
encryption in the multi-user setting. In this paper, we tackle all these concerns
and develop a new searchable encryption for multi-users that we call Common

110 P. Wang, H. Wang, and J. Pieprzyk

Secure Index for Conjunctive Keyword-based Retrieval over Encrypted Data
(CSI-CKR).

Our Contributions. The contributions of this paper are four-fold: (1) We
present a formal definition of CSI-CKR and describe the security requirement
for CSI-CKR: Data Privacy against Server Administrators and Leaving Members
and User Privacy against Insider and Group Manager, and the security models.
(2) We construct a CSI-CKR from dynamic accumulators, Paillier’s cryptosys-
tem and blind signatures, and prove that the scheme satisfies the prescribed
security requirement. (3) In our construction, authentication codes, common se-
cure indices, trapdoors and encrypted data are all produced with public keys.
This makes our scheme different from any previous searchable encryption in
which the trapdoor is generated with secret keys. (4) Our work addresses all
those shortcomings of Park et al’s schemes, and the proposed scheme achieves
better performance.

Organization. Section 2 provides models and cryptographic preliminaries. In
Section 3 we give an overview of RSA-based accumulators, Paillier’s cryptosys-
tem and blind signatures. In Section 4 we construct a CSI-CKR. Section 5 shows
the correctness of the construction. In Section 6 the security of the proposed
scheme is proved. In Section 7 we compare our scheme with other schemes. Fi-
nally Section 8 includes conclusions and future research.

2 Preliminaries

Notation. Through this paper, we use the following notation. Let a
R←− A

denote that an element a is chosen uniformly at random from the set A. |G|
stands for the cardinality of a group G. For any positive integer k, [k] denotes
the set of integers {1, . . . , k}.

2.1 Model

We consider the group setting in which a collection of users stores their encrypted
documents together with the document indices on an untrusted server. All the
documents can be accessed by each user from the group. The group may be
dynamic, i.e., a person may join and leave the group. For a leaving member, all
documents stored on the server should be no longer accessible to the member
including her own documents. A joining member not only can store her encrypted
documents on the server that would be shared by other users, but also is able
to retrieve all the previous and current documents that are owned by the group
members.

There are three parts: a group manager (GM), users (members) in the group
and a server. GM plays an important role as it manages the group members, their
joining and leaving operations, group key generation and distribution, and all

Common Secure Index for Conjunctive Keyword-Based Retrieval 111

other operations related to maintenance of secret keys. First, GM setups the sys-
tem and assigns an authentication code to each user. Then, every user encrypts
her documents using the group encryption key, generates their corresponding
common secure indices with the group public keys, which are the encryptions
of principal keywords of the corresponding documents, and stores them on the
server. When a user wishes to retrieve the documents containing some keywords,
she uses the group public keys to make a trapdoor for the keywords and sends
the trapdoor along with her authentication code to the server. Next, the server
verifies the authentication code to confirm that the user is legitimate, and then,
for the legitimate user, selects documents that contain the keywords by searching
their common secure index with the trapdoor. After that, the server sends all
matched data to the user. On receiving the data, the user encrypts them with
her encryption key and sends the encrypted data to GM, who uses the group
decryption key to decrypt the double-encrypted documents and return them to
the user. Finally, the user gets the desired documents by decrypting her received
data from GM with her decryption key.

Additionally, we assume that each document is associated with a list of key-
words, and the number of keywords associated with a document (data) remains
fixed. This constraint can be satisfied by simply adding null keywords to the list.
As in [9], trapdoors specify which positions should be searched within an index.

Now we give a formal definition of Common Secure Index for Conjunctive
Keyword-based Retrieval over Encrypted Data (CSI-CKR).

Definition 1. A CSI-CKR consists of the following five components:

SystemSetup is to instantiate the scheme.
It has one algorithm SysSet(k) executed by GM, which takes as input a
secure parameter s, and outputs a tuple of keys (PKg, PKs, SK), where
PKg is published to the group, PKs is sent to the server, and SK is kept
secret by GM.

AuthCodGen is to generate group members’ PIN numbers, their secure codes
and a secure test code.
It includes the following three algorithms:
GrpAut(G) is executed by GM to make authentication codes for the orig-

inal group. It takes as input all members M1, . . . , MN in the group G,
outputs PIN numbers di and secure codes ci for all members, and a secure
test code STC for the server.

MemJon({MN+i}i=1,...,r, {ci}i=1,...,N) is executed by GM interacting with
old members to deal with the situation that some new users will join to
the group. It takes as input all newly joining users {MN+i}i=1,...,r and
all secure codes {ci}i=1,...,N of old members, outputs a PIN number dN+i

and a secure code cN+i for each newly joining members, a new secure
test code STC′ for the server, and the updated secure code c′i for every
old member Mi (i = 1, . . . , N).

MemLev({dji}i=1,...,r, {ci}i∈[N]\{j1,...,jr}) is executed by GM interacting
with current members (who are still in the group after some members
leave) to deal with the situation that some members will leave the group.

112 P. Wang, H. Wang, and J. Pieprzyk

It takes as input all leaving members’ PIN numbers {dji}i=1,...,r and all
current members’ secure codes {ci}i∈[N]\{j1,...,jr}, outputs a new secure
test code STC′ for the server, and the updated secure code c′i for every
current member Mi (i = 1, . . . , N).

DataGen is to build searchable encrypted data that are uploaded to the server.
It includes the following two algorithms executed by group members:
IndGen(R) is to make a common secure index. It takes as input a data R,

outputs its common secure index CSIR.
DatUpl(R, CSIR) is to upload the encrypted data with the common secure

index to the server. It takes as input a data R and its common secure
index CSIR, and then uploads the encrypted data Sg(R) with its CSIR

to the server.
DataQuery is to retrieve the encrypted data which contains specific keywords.

It includes the following four algorithms:
Trpdor(L′, l) is executed by a group member to make a trapdoor of a list of

keywords the member wants to search. It takes as input a keyword list L′

and the locations l of the keywords in the common secure index, outputs
the trapdoor TL′.

MemChk(di, ci, STC) is executed by the server to check the membership.
It takes as input the member’s PIN number di and secure code ci and
the secure test code STC, outputs either Yes for access granted or Access
Denied to terminate the scheme.

SrhInd(TL′ , CSIR) is executed by the server to scan all common secure in-
dices against the trapdoor. If the output of MemChk(di, ci, STC) is Yes,
it takes as input a trapdoor TL′ and a common secure index CSIR, out-
puts an answer Yes or No to indicate that the data includes the searched
keywords or not, respectively.

DatDwn is executed by the server to return a result to the member. Based
on the output of SrhInd(TL′ , CSIR), it returns a collection of matched
data or an answer No Data Matched to the member.

DataDcrypt is to obtain the data.
It has one algorithm DatDcp(Sg(R)) executed by a member interacting with
GM, which takes as input an encrypted data Sg(R), outputs the data R.

2.2 Privacy

To a scheme of CSI-CKR, the attacker can be categorized into four classes:

Server Administrator (SA) - A person who has privileges to administer the
server storing the encrypted data, but uses his administration rights in order
to extract valuable information.

Leaving Member (LM) - A person who gained but now has lost access to the
encrypted data, and tries to extract valuable information after his revocation.

Insider - A person who belongs to the group of trusted users, and tries to
impersonate other identity to get information.

GM - A person who has all group secret keys and tries to find out about the
information the document the user is interested in her query.

Common Secure Index for Conjunctive Keyword-Based Retrieval 113

Depending on the types of attackers, the privacy requirements for CSI-CKR are
as follows.

Data Privacy against SA - A SA can know nothing about keywords and doc-
ument contents, i.e., encrypted documents must not provide any information
about their contents, common secure indices leak nothing about their con-
tents, and there must not exist information which is leaked from the query
and the results generated in the search process.

Data Privacy against LM - A LM cannot search and retrieve any documents
after she has left the group.

User Privacy against Insider - An insider cannot impersonate any other le-
gitimate member in order to search and retrieve documents.

User Privacy against GM - A GM cannot know anything about the docu-
ments a user retrieves.

2.3 Security Models

We use two security models for our scheme. The first is the Semantic Security
against Chosen Keyword Attacks (IND-CKA) introduced by Goh [8], which pro-
vides Data Privacy against SA. To simplify the proof, Golle et al [9] described
three security games that capture IND-CKA and showed that they are asymp-
totically equivalent. We use one of these games, namely the Indistinguishability
of Ciphertext from Random (ICR).

Because common secure indices and trapdoors concern the keyword list L
only, and not the data R, for convenience, we use CSIL instead of CSIR. We
assume that the number of keywords in a document is m.

Let Rand(L, I) is denoted a randomized keyword list formed from the keyword
list L = (w1, . . . , wm) by replacing the keywords of L that are indexed by a subset
I ⊂ {1, . . . , m} by random values. To describe conveniently, we use a notion of
Distinguishing Trapdoor introduced in [9].

Definition 2. A trapdoor T is distinguishable for keyword lists Li and Lj if

SrhInd(T, CSILi) �= SrhInd(T, CSILj).

Given a set of indices I ⊂ {1, . . . , m}, A trapdoor T distinguishes a keyword list
L from Rand(L, I) if

SrhInd(T, CSIL) = Y es and I ∩ Loc(T) �= ∅,

where Loc(T) is the locations of the keywords of T in the keyword list.

Definition 3. ICR is a game between an adversary A and a challenger C:

Setup A adaptively selects a polynomial number of keyword lists, L, and re-
quests the common secure indices, CSIL, from C.

Queries A may query C for the trapdoor TL′ of a keyword list L′. With TL′, A
can invoke SrhInd(TL′, CSIL) on a common secure index CSIL to deter-
mine if all keywords in the list L′ are contained in L or not.

114 P. Wang, H. Wang, and J. Pieprzyk

Challenge After making a polynomial number of queries, A decides on chal-
lenge by picking a keyword lists L0 and a subset I ⊂ {1, . . . , m} such that
A must not have asked for any trapdoor distinguishing L0 from L1 = Rand

(L0, I), and sending them to C. Then C chooses b
R←− {0, 1}, generates the

common secure index CSILb
, and returns it to A. After the challenge of de-

termining b for A is issued, A is allowed again to query C with the restriction
that A may not ask for the trapdoor that distinguishes L0 from L1.

Response Eventually A outputs a bit bA, and is successful if bA = b. The
advantage of A in winning this game is defined as AdvA = |Pr[b = bA]−1/2|,
and the adversary is said to have an ε-advantage if AdvA > ε.

Now we introduce another notion of security that we call Unforgeability against
Collaboration Member Attacks (UNF-CMA), which captures that the group
membership is computationally unforgeable, and provides Data Privacy against
LM and User Privacy against Insider.
Definition 4 (UNF-CMA). A group membership authentication protocol is
secure if it is hard for each collusion of up to t (1 ≤ t ≤ |G|) members in the
group G to forge a secure code of any other member (out of the collusion) in the
group G or an outside user M ′ (out of the group) with a PIN number d′ and a
secure code c′ which can prove that M ′ is a member of the group G.

2.4 Complexity Assumptions

First let us state basic number-theoretic facts, and then make complexity as-
sumptions that will be used in our work.
Fact: For a safe number n = pq, where p = 2p′ + 1, q = 2q′ + 1 and p, p′, q, q′

are primes, Euler’s Totient function φ(n) = (p − 1)(q − 1), φ(n2) = nφ(n), and
Carmichael’s function λ(n) = lcm(p − 1, q − 1).

Definition 5 (Strong RSA Assumption). Given a safe number n and a
random element y ∈ Z∗

n, it is infeasible to find any pair (x, e) (e > 1) such that
y = xe mod n.

We require a slightly stronger variant of Decision Diffie-Hellman (DDH) as-
sumption – co-DDH, which originated in [4] and was recently used as a hardness
assumption in [1].

Definition 6 (co-DDH Assumption). Let G0 = 〈g〉 and G1 = 〈P 〉 be two
cyclic groups, and the DDH assumption holds within G1. Given random gb ∈ G0

and P, aP, bP, cP ∈ G1, a probabilistic polynomial time algorithm A is said to
have an ε-advantage to break the co-DDH assumption if

|Pr[A(gb, P, aP, bP, abP) = 1] − Pr[A(gb, P, aP, bP, cP) = 1]| > ε.

3 Overview of Techniques

3.1 RSA-Based Accumulators

The basic RSA-based accumulator [3] is constructed as follows: for a set of
elements X = {x1, . . . , xm}, the accumulator function is

Common Secure Index for Conjunctive Keyword-Based Retrieval 115

yi = f(yi−1, xi),

where f is a one-way function: f(u, x) = ux mod n for suitably-chosen values of
the seed u and RSA modulus n.

The accumulated value is

v = ux1...xm mod n,

and the witness for the element xi is

wi = ux1...xi−1xi+1...xm mod n.

Baric and Pfitzmann [2] constrained the elements to be primes and showed
that the accumulator is collision-resistant assuming factoring is difficult, that
means it is hard to compute a witness for an element that is not accumulated.

Camenisch and Lysyanskaya [6] further developed dynamic accumulators,
which feature that the accumulator can dynamically add or delete elements
into/from the original set. In their setting, the domain of the elements consists
of prime numbers in particular range, the seed u is from the group of quadratic
residues.

3.2 Paillier’s Cryptosystem

We now briefly review Paillier’s Cryptosystem. For the detail, refer to [10]. Let
n be a safe number. Bα ⊂ Z∗

n2 denotes the set of elements of order nα, and B
denotes their disjoint union for α = 1, . . . , λ, where λ is adopted instead of λ(n)
for visual comfort. Randomly select a base g from B, and define L(x) = x−1

n .
Paillier’s Cryptosystem defines an integer-valued bijective function:

Eg: Zn × Z∗
n → Z∗

n2 , (x, r) → gx · rn mod n2,

where (n, g) are public parameters whilst the pair (p, q) (or equivalently λ) re-
mains private. The encryption and decryption algorithms are as follows:

Encryption:
plaintext x < n, randomly select r < n, ciphertext y = gx · rn mod n2.

Decryption:
ciphertext y < n2, plaintext x = D(y) = L(yλ mod n2)

L(gλ mod n2) mod n.

It has additive homomorphic properties:

∀σ ∈ Z+, D(yσ mod n2) = σx mod n, and
∀y1, y2 ∈ Zn2 , D(y1y2 mod n2) = x1 + x2 mod n

3.3 Blind Signatures

Blind signature schemes, first introduced by Chaum in [7], allow a user to get a
signature without giving the signer any information about the actual message.
The signer has a signing function S′ and its inverse S, where S′ is known only to

116 P. Wang, H. Wang, and J. Pieprzyk

the signer (secret key) and S is publicly known (public key), such that S(S′(x)) =
x for a message x. The user has a commutating function CM and its inverse C′

M ,
where both are known only to the user, such that C′

M (S′(CM (x))) = S′(x), and
CM (x) and S′(x) give no clue about x. Briefly, the protocol is precessed as
follows:

1. The user chooses x at random such that H(x), where H is a public hash
function, and supplies CM (x) to the signer.

2. The signer signs CM (x) by applying S′ and returns the signed matter
S′(CM (x)) to the user;

3. The user strips signed matter by application of C′
M , yielding C′

M (S′(CM (x)))
= S′(x);

4. Anyone can check that the stripped matter S′ was formed by the signer, by
applying the signer’s public key S and checking that H(S(S′(x))).

The signer knows nothing about the correspondence between the elements of
the set of stripped signed matter S′(xi) and the element of the set of unstripped
signed matter S′(CM (xi)).

4 Constructing CSI-CKR

4.1 SystemSetup – System Instantiation Process

SysSet(k):

1. Takes a security parameter k, chooses a random RSA modulus n of length
k. Let f : {0, 1}k × {0, 1}l → Zn be a pseudorandom function, where l is the
length of the longest word. We denote f(·, ·) by f(·) for convenience.

2. Chooses a random quadratic residue u modulo n (u �= 1), and defines M =
{e ∈ primes : e �= p′, q′ ∧ A ≤ e ≤ B}, where 2 < A and B < A2 and A, B
are dependent on k and the upper bound of |G|.

3. Chooses σ
R←− Z+, and computes β = σλ mod φ(n2) and γ = σL(gλ mod n2)

mod n, where λ, g, and L(·) are parameters in Paillier’s cryptosystem.
4. Chooses a cyclic group G1 = 〈P 〉, in which the computation is based on the

modulus n and the DDH assumption holds.
5. Chooses a pair of Blind Signature keys for the group: signing function Sg

and its inverse S′
g, where Sg is for group members to encrypt their data.

6. Publishes PKg = (g, γ, f(·), P, n, Sg) to the group (group public key), sends
PKs = (M, β, L(·), n) to the server, and keeps SK = (σ, λ, S′

g) privately
(group secret key).

4.2 AuthCodGen – Group Authentication Process

GrpAut(G): The group G has N members {M1, . . . , MN}
1. For every member Mi (1 ≤ i ≤ N), GM selects di

R←− M as Mi’s PIN
number.

Common Secure Index for Conjunctive Keyword-Based Retrieval 117

2. GM picks up d∗ R←− M \ D, where D = {d1, . . . , dN}, and computes
Mi’s secure code

ci = ud1···di−1di+1···dN d∗
mod n.

3. GM sends the server the secure test code
STC = ud1···dN+1d∗

mod n,
and puts d∗ in D.

MemJon({MN+i}i=1,...,r, {ci}i=1,...,N): New users MN+1, . . . , MN+r (0 < r ≤
|M| − |D|) would join to the group G.
1. GM selects r + 1 random numbers {dN+i}i=1,...,r and d∗+ from M \ D,

and computes
v = dN+1 · · · dN+rd

∗
+ mod φ(n),

then sends v to every old member.
2. GM assigns {dN+i}r=1,...,r to {MN+i}i=1,...,r respectively as their PIN

numbers, and computes their secure codes
ci = STCvd−1

N+i mod n (i = 1, . . . , r)
and sends the server the new secure test code

STC′ = STCv mod n,
then puts {dN+i}r=1,...,r and d∗+ in D.

3. When old members {M1, . . . , MN} receive v, they update their secure
codes as follows:

c′i = (ci)v mod n, i = 1, . . . , N .
4. On receiving the new secure test code STC′, the server replaces STC

with STC′.
MemLev({dji}i=1,...,r, {ci}i∈[N]\{j1,...,jr}): Old membersMj1 , . . . , Mjr (0 < r <

|G|) would leave from the group G.
1. GM computes

v = dj1 · · · djr mod φ(n)
and the new secure test code

STC′ = STCv−1
mod n,

and then sends STC′ to the server and v and STC′ to all members who
are still in G after {Mji}i=1,...,r leave. Finally GM deletes {dji}i=1,...,r

from D.
2. When a current member Mi receives v and STC′, she computes the

integers a, b such that adi + bv = 1, and then updates her secure codes
as follows:

c′i = (ci)b(STC′)a mod n.
3. On receiving the new secure test code STC′, the server replaces STC

with STC′.

4.3 DataGen – Data Build Process

IndGen(R): A member of G chooses ρ
R←− Z+. Lets s0 = ρP , and for each

word wj in her data R (j = 1, . . . , m), computes sj = ργf(wj)P . Then
outputs CSIR = (s0, s1, . . . , sm) as the common secure index of R.

DatUpl(R, CSIR): The member uses group’s public key Sg to encrypted her
Data Sg(R), and uploads the encrypted data Sg(R) with its CSIR to the
server.

118 P. Wang, H. Wang, and J. Pieprzyk

4.4 DataQuery – Data Search and Download Process

Trpdor(L′, l): A member chooses ri
R←− Zn. For each word w′

j ∈ L′
i, let cj =

gf(wj) · ri
n mod n2. The member computes C =

∏k
j=1 cj mod n2. Then the

member takes TL′ = (C, l) as the trapdoor of the keyword list L′, where
l = (l1, . . . , lk) is the set of the locations of keywords (w′

1, . . . , w
′
k) in the

index, and sends the server the trapdoor TL′ along with her PIN number di

and secure code ci.
MemChk(di, ci, STC): The server verifies if di ∈ M and (ci)di = STC mod n.

If so, outputs Yes; otherwise, returns the member Access Denied and termi-
nates the scheme.

SrhInd(TL′ , CSIR): If the output of MemChk(di, ci, STC) is Yes, for a CSIR,
the server tests L(Cβs0 mod n2) ≡

∑
j∈l sj (mod n). If so, outputs Yes;

otherwise, outputs No.
DatDwn: If the output of SrhInd(TL′ , CSIR) is Yes, puts the data R in a

collection, then check the next common secure index; otherwise, checks the
next common secure index. Finally, if the collection is not empty, the server
returns the collection to the member; otherwise, returns No Data Matched
to the member.

4.5 DataDcrypt – Data Decryption Process

DatDcp(Sg(R)): When the member receives a encrypted data Sg(R), she uses
her Blind Signature commutating function CM and its inverse C′

M to interact
with GM as follows:

1. The member uses CM to encrypt Sg(R) and sends CM (Sg(R)) to GM.
2. GM uses the secret key S′

g to decrypt

S′
g(CM (Sg(R))) = CM (S′

g(Sg(R))) = CM (R)

and returns it to the member.
3. The member uses C′

M to decrypt CM (R) to get the data R.

5 Correctness

5.1 Correctness of Authentication

For the outputs of algorithms GrpAut(G) and MemJon({MN+i}
i=1,...,r, {ci}i=1,...,N), it is very simple to prove that the output of algorithm
MemChk(di, ci, STC) is correct.

Considering the outputs of algorithm MemLev({dji}
i=1,...,r, {ci}i∈[N]\{j1,...,jr}), let’s verify the correctness of the result of algorithm
MemChk(di, ci, STC).

Common Secure Index for Conjunctive Keyword-Based Retrieval 119

(ci)di mod n = ((ci)b(STC′)a)di mod n

= (((ci)b(STC′)a)div)v−1
mod n

= (((ci)di)bv((STC′)v)adi)v−1
mod n

= (STCbvSTCadi)v−1
mod n

= (STCadi+bv)v−1
mod n

= STC′ mod n

So, the result of authentication is correct.

5.2 Correctness of Search

From the properties of Paillier’s Cryptosystem, we have

t(m1 + . . . + mk) ≡ L((c1...ck)tλ mod n2)
L(gλ mod n2) (mod n).

Thus

t(m1 + . . . + mk)L(gλ mod n2) ≡ L((c1 . . . ck)tλ mod n2) (mod n).

Let t = ρσP and mj = f(wj), so we have:
∑

j∈l sj ≡ L(Cβs0 mod n2) (mod n).

Therefore, the result of search is correct.

6 Security

Theorem 1. The proposed CSI-CKR scheme is semantically secure under the
security game ICR if co-DDH is intractable.

Proof. Suppose that the scheme is not semantically secure under the security
game ICR. Then there exists an adversary A that wins the ICR game with an
ε-advantage. We build an adversary A′ that uses A as a subroutine and breaks
the co-DDH assumption with the same ε-advantage. The running time of A′ is
approximately the same as A’s.

Let (gb, P, aP, bP, cP) be A′’s co-DDH challenge. A′’s goal is to break the
co-DDH assumption, or in other words to decide whether c = ab. A′ works by
interacting with A in the ICR game as follows:

Setup: A makes a polynomial number of requests for common secure indices,
which A′ answers as follows. Let one of A’s keyword lists be Li = (wi,1, . . . ,

wi,m). A′ chooses a value ρ
R←− Z+, compute s0 = ρP . For each word wi,j ∈

Li (1 ≤ j ≤ m), it picks a value xi,j
R←− Zn, and compute sj = ργxi,jbP .

Note that A′ is given P and bP as part of co-DDH challenge, so it can
compute s0 and sj . To be consistent across different queries, A′ keeps track
of the corresponding pair (wi,j , xi,j). Finally, it returns the common secure
index CSILi = (s0, s1, . . . , sm) to A.

120 P. Wang, H. Wang, and J. Pieprzyk

Queries: When A makes a trapdoor query on keyword list L′ = (w′
1, . . . , w

′
k)

with keywords’ locations l = (l1, . . . , lk) in common secure indices, A′ chooses
a value r

R←− Zn, and computes cj = (gb)yj · rn mod n2 for each word
w′

j ∈ L′, where yj = xi,j if w′
j previously appeared in any one of A’s queries

to either its IndGen(R) or Trpdor(L′, l) oracles or yj
R←− Zn otherwise

(also the corresponding pair (w′
j , yj) has to be kept in memory for future

use). Observe that, although A′ does not know b, it can compute cj , because
gb is given to it as part of its co-DDH challenge. Then A′ computes C =∏k

j=1 cj mod n2. Finally, A′ returns the trapdoor TL′ = (C, l) to A. Because
A′ consistently uses the same value xi,j for word wj , TL′ is a valid trapdoor
for L′ = (w′

1, . . . , w
′
k), and SrhInd(TL′ , CSILi) returns Yes if and only if Li

contains all the keywords in L′ at the locations specified by l = (l1, . . . , lk).
Challenge: After making polynomially many index and trapdoor queries, A de-

cides on a challenge by submitting the challenge keyword list Lδ =
(wδ,1, . . . , wδ,m). Then A′ computes s0 = ρaP and sj = ργyδ,jcP , where
yδ,j = xi,j if wδ,j previously appeared in one of A’s queries (including in-

dex queries and trapdoor ones) or yδ,j
R←− Zn otherwise. Notice that A′

can compute s0 and sj by using given aP and cP . Finally A′ returns to A
the challenge common secure index CSILδ

= (s0, s1, . . . , sm). Note that, if
c = ab, CSILδ

is a correct common secure index for Lδ; if c �= ab, CSILδ
is

a correct common secure index for some other arbitrary keyword list. After
the challenge, A is allowed to make more trapdoor and index queries with
the requested restriction, which A′ answers as it did in the stage of Queries.

Response: A outputs a guess that represents its decision as to whether CSILδ

is a correct common secure index for Lδ or not. Then A′ returns the same
guess as its own answer to its co-DDH challenge.

Since CSILδ
is a correct common secure index for Lδ if and only if c = ab, it

follows that the advantage of A′ in breaking co-DDH assumption is ε if A has
an ε-advantage in breaking the ICR game.

Theorem 2. The proposed CSI-CKR scheme is secure under UNF-CMA if
Strong RSA assumption holds.

Proof. In our construction, all LMs and Insiders (members) only use group public
keys to build common secure indices and trapdoors, and Insiders only use group
public keys to update their secure codes, they never know the secret keys.

First we prove that it is hard for each collusion of up to t (1 ≤ t ≤ |G|)
members in the group G to forge an outside user M ′ (out of the group) with
a PIN number d′ ∈ M \ IDG and a secure code c′ which can prove that M ′ is
a member of the group G, where IDG is the collection of PIN numbers of all
members in G.

Without loss of generality, assume t = |G|. According to Camenisch et al’s
theorem (Theorem 2 in their paper [6]), it is hard for |G| members to collabo-
rate to forge a legitimate member M ′ with a PIN number d′ ∈ M \ D and a
secure code c′ which can make the output of algorithm MemChk(di, ci, STC) to
be Yes.

Common Secure Index for Conjunctive Keyword-Based Retrieval 121

All the numbers in D \ IDG are chosen uniformly at random by GM, and
there exists no member in G who knows these numbers. So let

x = u(
∏

d∗∈D\IDG
d∗) mod n,

all the secure codes of the members seem to be computed on x. According
to Baric et al’s theorem (Theorem 5 in their paper [2]), it is hard for |G|
members to collaborate to forge a legitimate member M ′ with a PIN number
d′ ∈ D \ IDG and a secure code c′ which can make the output of algorithm
MemChk(di, ci, STC) to be Yes.

Next we show that it is computationally infeasible for each collusion of up to
t (1 ≤ t < |G|) members in the group G to forge a secure code of any other
member (out of the collusion) in the group.

We suppose that a collusion of t (1 ≤ t < |G|) members {Mj1 , . . . , Mjt} in
the group G can forge a secure code c′ of a member M ′ ∈ G \ {Mj1 , . . . , Mjt}
whose PIN number is d′. This means,

(c′)d′ ≡ STC ≡ yr (mod n),

where y = u
(
∏

d∈D\{dj1 ···djt
} d)

mod n and r = dj1 · · ·djt .
Now let’s construct the d′-th root x of y as in [12]:
Since d′ is prime, with the extended Euclidean algorithm, we can compute

a, b ∈ Z such that ar + bd′ = 1. Let x = (c′)ayb, we have

xd′
mod n = ((c′)ayb)d′

mod n

= ((c′)d′
)aybd′

mod n

= STCaybd′
mod n

= yarybd′
mod n

= y mod n.

Thus, we break the Strong RSA assumption.

Because the algorithm DatDcp(Sg(R)) follows from Blind Signature schemes
in a straightforward way, we have the following theorem immediately.

Theorem 3. The proposed CSI-CKR scheme is secure for User Privacy against
GM.

7 Comparison with Park et al’s Schemes

In this section, we compare our construction with Park et al’s schemes. As we
mentioned above, their schemes use an identical group session key as their au-
thentication codes for all group members, so it cannot provide User Privacy
against Insider. Their schemes use Goh’s single-user scheme [8] to build common
secure indices and trapdoors, and use the group encryption and decryption keys
to process the data, that means, every member knows the secret keys, hence,
their schemes bring a big risk to the key management; and our scheme is based

122 P. Wang, H. Wang, and J. Pieprzyk

on a new idea different from any previous single-user schemes, and only uses
public keys to generate authentication codes, build common secure indices and
trapdoors, and encrypt the data. Therefore, our scheme is better to key man-
agement. After the q-th session in their schemes, a user must make q trapdoors
for a list of keywords, thus, when the q is big enough, their schemes become
much inefficient. On the other hand, the size of trapdoor in our scheme is fixed
to 2n + log m. So our scheme is more practical than theirs. In their schemes,
if a LM reveals the group decryption key to a SA, the SA can decrypt all the
documents encrypted previously, as a user can know all of the previous group
encryption keys by hashing the current group encryption key repeatedly. This
breaks their schemes down completely. However, in our scheme, the members do
not have the decryption key, so our scheme avoids such attacks. In addition, our
scheme does not induce any false positives that their schemes bring inevitably.

8 Conclusion and Open Problem

Our proposed scheme, CSI-CKR, is the searchable protocol on multi-users shared
encrypted data. We present a formal definition of CSI-CKR, and defined the
security requirement for the dynamic group retrieval system on encrypted data.
Our scheme can provide Data Privacy against SA and LM and User Privacy
against Insider and GM. Our scheme introduced GM to play a trusted third
part, so designing the scheme for group retrieval without GM is still a challenging
problem.

References

[1] Ballard, L., Kamara, S., Monrose, F.: Achieving Efficient Conjunctive Keyword
Searches over Encrypted Data. In: Qing, S., Mao, W., Lopez, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

[2] Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

[3] Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

[4] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

[5] Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. Cryptology ePrint Archive, Report (2006)/287

[6] Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[7] Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptol-
ogy: CRYPTO 1982, pp. 199–203. Plenum Publishing, New York (1982)

[8] Goh, E.-J.: Secure indexes. In: Cryptology ePrint Archive, Report, /216, (Febru-
ary 25, 2004) See http://eprint.iacr.org/2003/216/forthelatestversion

http://eprint.iacr.org/2003/216/ for the latest version

Common Secure Index for Conjunctive Keyword-Based Retrieval 123

[9] Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Search over Encrypted
Data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 31–45. Springer, Heidelberg (2004)

[10] Paillier, P.: Public-Key Cryptosystems based on Composite Degree Residue
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

[11] Park, H.A., Byun, J.W., Lee, D.H.: Secure Index Search for Groups. In: Katsikas,
S.K., Lopez, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp. 128–140.
Springer, Heidelberg (2005)

[12] Shamir, A.: On the Generation of Cryptographically Strong Pseudorandom Se-
quences. ACM Transaction on Computer Systems 1(1), 38–44 (1983)

[13] Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55
(May 2000)

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 124–141, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generating Microdata with P-Sensitive K-Anonymity
Property

Traian Marius Truta1, Alina Campan2, and Paul Meyer1

1 Department of Computer Science, Northern Kentucky University,
Highland Heights, KY 41099, USA
{trutat1,meyerp1}@nku.edu

2 Department of Computer Science, Babes-Bolyai University,
Cluj-Napoca, RO-400084, Romania

alina@cs.ubbcluj.ro

Abstract. Existing privacy regulations together with large amounts of available
data have created a huge interest in data privacy research. A main research
direction is built around the k-anonymity property. Several shortcomings of the
k-anonymity model have been fixed by new privacy models such as p-sensitive
k-anonymity, l-diversity, (α, k)-anonymity, and t-closeness. In this paper we
introduce the EnhancedPKClustering algorithm for generating p-sensitive k-
anonymous microdata based on frequency distribution of sensitive attribute
values. The p-sensitive k-anonymity model and its enhancement, extended p-
sensitive k-anonymity, are described, their properties are presented, and two
diversity measures are introduced. Our experiments have shown that the
proposed algorithm improves several cost measures over existing algorithms.

Keywords: Privacy, k-anonymity, p-sensitive k-anonymity, attribute disclosure.

1 Introduction

The increased availability of individual data has nowadays created a major privacy
concern. Legislators from many countries have tried to regulate the use and disclosure
of confidential information (or data) [2]. New privacy regulations, such as the Health
Insurance Portability and Accountability Act (HIPAA) [7], along with the necessity of
collecting personal information have generated a growing interest in privacy research.
Several techniques that aim to avoid the disclosure of confidential information by
processing sensitive data before public release have been presented in the literature.
Among them, the k-anonymity model was recently introduced [16, 17]. This property
requires that in the released (a.k.a. masked) microdata (datasets where each tuple
belongs to an individual entity, e.g. a person, a company) every tuple will be
indistinguishable from at least (k-1) other tuples with respect to a subset of attributes
called key or quasi-identifier attributes.

Although the model’s properties, and the techniques used to enforce it on data,
have been extensively studied [1, 4, 11, 16, 18, 20, etc.], recent results have shown
that k-anonymity fails to protect the privacy of individuals in all situations [14, 19, 23,

 Generating Microdata with P-Sensitive K-Anonymity Property 125

etc.]. New enhanced privacy models have been proposed in the literature to deal with
k-anonymity’s limitations with respect to sensitive attributes disclosure (this term will
be explained in the next section). These models follow one of the following two
approaches: the universal approach uses the same privacy constraints for all
individual entities, while the personalized approach allows users or data owners to
customize the amount of privacy they need. The first category of privacy protection
models, based on the universal approach, includes: p-sensitive k-anonymity [19] with
its extension called extended p-sensitive k-anonymity [5], l-diversity [14], (α, k)-
anonymity [22], and t-closeness [13]. The only personalized privacy protection model
we are aware of is personalized anonymity [23].

In this paper we introduce an efficient algorithm for anonymizing a microdata set
such that its released version will satisfy p-sensitive k-anonymity. Our main interest in
developing a new anonymization algorithm was to obtain better p-sensitive k-
anonymous solutions w.r.t. various cost measures than the existing algorithms by
taking advantage of the known properties of the p-sensitive k-anonymity model.

In order to describe the algorithm, the p-sensitive k-anonymity model, extended p-
sensitive k-anonymity model, and their properties are presented. Along with existing
cost measures such as discernability measure (DM) [3] and normalized average
cluster size metric (AVG) [12], two diversity measures are introduced. The proposed
algorithm is based on initial microdata frequency distribution of sensitive attribute
values. It partitions an initial microdata set into clusters using the properties of the p-
sensitive k-anonymity model. The released microdata set is formed by generalizing
the quasi-identifier attributes of all tuples inside each cluster to the same values. We
compare the results obtained by our algorithm with the results of those from both the
Incognito algorithm [11], which was adapted to generate p-sensitive k-anonymous
microdata, and the GreedyPKClustering algorithm [6].

The paper is structured as follows. Section 2 presents the p-sensitive k-anonymity
model along with its extension. Section 3 introduces the EnhancedPKClustering
algorithm. Experimental results and conclusions are presented in Sections 4 and 5.

2 Privacy Models

2.1 p-Sensitive k-Anonymity Model

The p-sensitive k-anonymity model is a natural extension of k-anonymity that avoids
several shortcomings of this model [19]. Next, we present these two models.

A microdata is a set of tuples in the relational sense. The initial dataset (called
initial microdata and labeled IM) is described by a set of attributes that are classified
into the following three categories:

 I1, I2,..., Im are identifier attributes such as Name and SSN that can be used to
identify a record.

 K1, K2,…, Kq are key or quasi-identifier attributes such as ZipCode and Sex that
may be known by an intruder.

 S1, S2,…, Sr are confidential or sensitive attributes such as Diagnosis and Income
that are assumed to be unknown to an intruder.

126 T. M. Truta, A. Campan, and P. Meyer

In the released dataset (called masked microdata and labeled MM) only the quasi-
identifier and confidential attributes are preserved; identifier attributes are removed as
a prime measure for ensuring data privacy. Although direct identifiers are removed,
an intruder may use record linkage techniques between externally available datasets
and the quasi-identifier attributes values from the masked microdata to glean the
identity of individuals [21]. To avoid this possibility of disclosure, one frequently
used solution is to further process (modify) the initial microdata through
generalization and suppression of quasi-identifier attributes values, so that to enforce
the k-anonymity property for the masked microdata. In order to rigorously and
succinctly express k-anonymity property, we use the following concept:

Definition 1 (QI-cluster): Given a microdata, a QI-cluster consists of all the tuples
with identical combination of quasi-identifier attribute values in that microdata.

There is no consensus in the literature over the term used to denote a QI-cluster. This
term was not defined when k-anonymity was introduced [16, 17]. More recent papers
use different terminologies such as equivalence class [22] and QI-group [23].

We define k-anonymity based on the minimum size of all QI-clusters.

Definition 2 (k-anonymity property): The k-anonymity property for a MM is satisfied
if every QI-cluster from MM contains k or more tuples.

Unfortunately, k-anonymity does not provide the amount of confidentiality required
for every individual [14, 19, 22]. To briefly justify this affirmation, we distinguish
between two possible types of disclosure; namely, identity disclosure and attribute
disclosure. Identity disclosure refers to re-identification of an entity (person,
institution) and attribute disclosure occurs when the intruder finds out something new
about the target entity [10]. K-anonymity protects against identity disclosure but fails
to protect against attribute disclosure when all tuples of a QI-cluster share the same
value for one sensitive attribute [19]. This attack is called homogeneity attack [14]
and can be avoided by enforcing a more powerful anonymity model than k-
anonymity, for example p-sensitive k-anonymity. A different type of attack, called
background attack, is presented in [14]. In this attack, the intruder uses background
information that allows him / her to rule out some possible values of the sensitive
attributes for specific individuals. Protection against background attacks is more
difficult since the data owner is unaware of the type of background knowledge an
intruder may posses. To solve this problem particular assumptions should be made,
and anonymization techniques by themselves will not fully eliminate the risk of the
background attack [22]. Still, enhanced anonymization techniques try to perform as
well as possible in case of background attacks.

 The p-sensitive k-anonymity model considers several sensitive attributes that must
be protected against attribute disclosure. Although initially designed to protect against
homogeneity attacks, it also performs well against different types of background
attacks. It has the advantage of simplicity and allows the data owner to customize the
desired protection level by setting various values for p and k. Intuitively, the larger the
parameter p, the better is the protection against both types of attacks.

 Generating Microdata with P-Sensitive K-Anonymity Property 127

Definition 3 (p-sensitive k-anonymity property): A MM satisfies p-sensitive k-
anonymity property if it satisfies k-anonymity and the number of distinct attributes
for each confidential attribute is at least p within the same QI-cluster from the MM.

To illustrate this property, we consider the masked microdata from Table 1 where Age
and ZipCode are quasi-identifier attributes, and Diagnosis and Income are confidential
attributes:

Table 1. Masked microdata example for p-sensitive k-anonymity property

Age ZipCode Diagnosis Income

20 41099 AIDS 60,000

20 41099 AIDS 60,000

20 41099 AIDS 40,000

30 41099 Diabetes 50,000

30 41099 Diabetes 40,000

30 41099 Tuberculosis 50,000

30 41099 Tuberculosis 40,000

The above masked microdata satisfies 3-anonymity property with respect to Age
and ZipCode. To determine the value of p, we analyze each QI-cluster with respect to
their confidential attribute values. The first QI-cluster (the first three tuples in
Table 1) has two different incomes (60,000 and 40,000), and only one diagnosis
(AIDS), therefore the highest value of p for which p-sensitive 3-anonymity holds is 1.
As a result, a presumptive intruder who searches information about a young person in
his twenties that lives in zip code area 41099 will discover that the target entity
suffers from AIDS, even if he doesn’t know which tuple in the first QI-cluster
corresponds to that person. This attribute disclosure problem can be avoided if one of
the tuples from the first QI-cluster would have a value other than AIDS for Diagnosis
attribute. In this case, both QI-clusters would have two different illnesses and two
different incomes, and, as a result, the highest value of p would be 2.

 From the definitions of k-anonymity and p-sensitive k-anonymity models we easily
infer that 2-sensitivity 2-anonymity is a necessary condition to protect any masked
microdata against any type of disclosure, identity or attribute disclosure.
Unfortunately, the danger of disclosure is not completely eliminated since an intruder
may “guess” the identity or attribute value of some individuals with a probability of
½. For many masked microdata such a high probability is unacceptable, and the
values of k and/or p must be increased.

2.2 p-Sensitive k-Anonymity Model Properties

We introduce the following notations, which will be used for expressing several
properties of p-sensitive k-anonymity and for presenting our anonymization
algorithm. For any given microdata set M, we denote by:

 n – the number of tuples in M.
 r – the number of confidential attributes in M.
 sj – the number of distinct values for the confidential attribute Sj (1 ≤ j ≤ r).

128 T. M. Truta, A. Campan, and P. Meyer

 j
iv – the distinct values for the confidential attribute Sj in descending order of

their occurrences (1 ≤ j ≤ r and 1 ≤ i ≤ sj).
 j

if – the number of occurrences of the value j
iv for the confidential attribute Sj;

in other words the descending ordered frequency set [11] for the confidential
attribute Sj (1 ≤ j ≤ r and 1 ≤ i ≤ sj). For each sensitive attribute Sj the following
inequality holds: jf1

≥ jf 2
≥ … ≥ j

s j
f .

 j
iSEC – the set of tuples from M such that they all have the value j

iv for Sj (1 ≤ j

≤ r and 1 ≤ i ≤ sj), in other words j
iSEC =)(Mj

ij vS =
σ . We use the term of a

sensitive equivalence class or attribute Sj to refer to any j
iSEC . The cardinality

of j
iSEC is j

if .

 j
icf – the cumulative descending ordered frequency set for the confidential

attribute Sj (1 ≤ j ≤ r and 1 ≤ i ≤ sj) [19]. In other words, j
icf = ∑

=

i

k

j
kf

1

.

)(max
,1

j
i

rj
i cfcf

=
= (0 ≤ i ≤)(min

,1
j

rj
s

=
) – the maximum between ith cumulative

descending ordered frequencies, for all sensitive attributes. We define cf0 = 0.

 j
ipSEC =

⎪
⎩

⎪
⎨

⎧

=∪∪∪

<

+ piifSECSECSEC

piifSEC

j
s

j
p

j
p

j
i

j
,...

,

1

, (1 ≤ j ≤ r and 1 ≤ i ≤ p). We

call each j
ipSEC as a p-sensitive equivalence class of attribute Sj. Each sensitive

attribute Sj partitions the tuples in M in p p-sensitive equivalence classes.
Moreover, the size of these equivalence classes descends from the jpSEC 1

 to

j
ppSEC 1−

. The last p-sensitive equivalence class, j
ppSEC , does not follow this

pattern.

P-sensitive k-anonymity can not be enforced for any given IM, for any p and k. We
present next two necessary conditions that express when this is possible [19].

Condition 1. (First necessary condition for an MM to have p-sensitive k-anonymity
property): The minimum number of distinct values for each confidential attribute in
IM must be greater than or equal to p.

A second necessary condition establishes the maximum possible number of QI-
clusters in the masked microdata that satisfy p-sensitive k-anonymity. To specify this
upper bound we use the maximum between cumulative descending ordered
frequencies for each sensitive attribute in IM [19].

Condition 2. (Second necessary condition for a MM to have p-sensitive k-anonymity
property): The maximum possible number of QI-clusters in the masked microdata is

maxClusters = ⎥
⎦

⎥
⎢
⎣

⎢ − −

= i

cfn ip

pi ,1
min .

 Generating Microdata with P-Sensitive K-Anonymity Property 129

Proof: We assume that for a given IM, k and p, the maximum possible number of QI-

clusters in the masked microdata maxClusters > ⎥
⎦

⎥
⎢
⎣

⎢ − −

= i

cfn ip

pi ,1
min . Let iVal be the i value

for which
i

cfn ip−− is minimum. We have:

maxClusters > iVal

cfn iValp−−
 and maxClusters ⋅ iVal > n – cfp– iVal. (1)

Since cfp–iVal tuples have only p – iVal distinct values for a confidential attribute (from
the definition of cumulative frequencies), the remaining tuples (n – cfp–iVal) must
contribute with at least iVal tuples to every cluster. In other words: n–cfp–iVal ≥
maxClusters ⋅ iVal, relation that contradicts (1). Q.E.D.

 Condition 2 provides a superior limit of the number of p-sensitive QI-clusters
that can be formed in a microdata set, and not the actual number of such clusters that
exist in data. Therefore, even the optimal partition w.r.t. the partition cardinality
criterion could consist in less p-sensitive QI-clusters than the number estimated by
Condition 2. Next, we give such an example where maxClusters value calculated
according to Condition 2 is strictly greater than the maximum number of p-sensitive
equivalence classes within the microdata. Fig. 1 contains a microdata described by 3
sensitive attributes together with the corresponding j

if and j
icf values.

A B C sj

jf1
 jf 2

 jcf1
jcf2

1 a α j = 1 A 2 2 2 4
1 b β j = 2 B 2 2 2 4
2 a β j = 3 C 2 2 2 4
2 b α cf1 cf2
 2 4

Fig. 1. A microdata with corresponding frequency / cumulative frequency set values

 For p=2, maxClusters = ⎥
⎦

⎥
⎢
⎣

⎢ − −

= i

cfn ip

pi ,1
min = ⎥⎦

⎥
⎢⎣
⎢ −

1

24 = 2. In fact, only one group that is

2-sensitive can be formed with these tuples!

2.3 Extended p-Sensitive k-Anonymity Model

The values of the attributes, in particular the categorical ones, are often organized
according to some hierarchies. Although Samarati and Sweeney introduced the
concept of value generalization hierarchy for only quasi-identifier attributes [16, 17],
these hierarchies can be applied and used for sensitive attributes as well. For example,
in medical datasets, the sensitive attribute Illness has values as specified by the ICD9
codes (see Fig. 2) [8]. The data owner may want to protect not only the leaf values as
in the p-sensitive k-anonymity model, but also values found at higher levels. For
example, the information that a person has cancer (not a leaf value in this case) needs
to be protected, regardless of the cancer type she has (colon cancer, prostate cancer,

130 T. M. Truta, A. Campan, and P. Meyer

breast cancer are examples of leaf nodes in this hierarchy). If p-sensitive k-anonymity
property is enforced for the released microdata, it is possible that for one QI-cluster
all of the Illness attribute values to be descendants of the cancer node in the
corresponding hierarchy, therefore leading to disclosure. To avoid such situations, the
extended p-sensitive k-anonymity model was introduced [5].

Fig. 2. ICD9 disease hierarchy and codes

For the sensitive attribute S we use the notation HVS to represent its value
generalization hierarchy. We assume that the data owner has the following
requirements in order to release a masked microdata:

 All ground values in HVS must be protected against disclosure.
 Some non-ground values in HVS must be protected against disclosure.
 All the descendants of a protected non-ground value in HVS must also be
protected.

Definition 4 (strong value): A protected value in the value generalization hierarchy
HVS of a confidential attribute S is called strong if none of its ascendants (including
the root) is protected.

Definition 5 (protected subtree): We define a protected subtree of a hierarchy HVS as
a subtree in HVS that has as root a strong protected value.

Definition 6 (extended p-sensitive k-anonymity property): The masked microdata
(MM) satisfies extended p-sensitive k-anonymity property if it satisfies k-anonymity
and for each QI-cluster from MM, and the values of each confidential attribute S
within that group belong to at least p different protected subtrees in HVS.

The necessary conditions to achieve extended p-sensitive k-anonymity on microdata
are similar with the ones presented for p-sensitive k-anonymity model.

At a closer look, extended p-sensitive k-anonymity for a microdata is equivalent to
p-sensitive k-anonymity for the same microdata where the confidential attributes
values are generalized to their first protected ancestor starting from the hierarchy root
(their strong ancestor). Consequently, in order to enforce extended p-sensitive
k-anonymity to a dataset, the following two-steps procedure can be applied:

042 HIV
Disease

…

…

…

001-139 Infectious
and parasitic diseases

140-239
Neoplasms 800-999 Injury

and poisoning

001-009
Intestinal
infectious
diseases

042 HIV
Infection

140-149 Malignant
neoplasm of lip, oral
cavity, and pharynx

140 Malignant
neoplasm of lip …
140.0 Upper lip,
vermilion border

 Generating Microdata with P-Sensitive K-Anonymity Property 131

 Each value of a confidential attribute is generalized (temporarily) to its first
strong ancestor (including itself).

 Any algorithm which can be used for p-sensitive k-anonymization is applied to
the modified dataset. In the resulted masked microdata the original values of the
confidential attributes are restored.

The dataset obtained following these steps respects the extended p-sensitive
k-anonymity property.

3 Privacy Algorithms

Anonymization algorithms, besides achieving the properties required by the target
privacy model (p-sensitive k-anonymity, l-diversity, (α, k)-anonymity, t-closeness),
must also consider minimizing one or more cost measure. We know that optimal k-
anonymization is a NP-hard problem [1]. By simple reduction to k-anonymity, it can
be easily shown that p-sensitive k-anonymization is also a NP-hard problem. Several
polynomial algorithms that achieve a suboptimal solution currently exist for enforcing
p-sensitive k-anonymity and other similar models on microdata. In [6] we described a
greedy clustering algorithm (GreedyPKClustering) for p-sensitive k-anonymity. For
both l-diversity and (α, k)-anonymity the authors proposed to use adapted versions of
Incognito as a first alternative [14, 22]. For (α, k)-anonymity a second algorithm
based on local-recoding, called Top Down, was also presented [22]. Incognito and
Top Down can be adapted for p-sensitive k-anonymity as well (in fact, we used such
an adapted version of Incognito in our experiments for comparison purposes). The
new anonymization algorithm will take advantage of the known properties of the p-
sensitive k-anonymity model in order to improve the p-sensitive k-anonymous
solutions w.r.t. various cost measures.

 In the next two subsections we formally describe our approach to the
anonymization problem, we present several cost measures, and we introduce our
anonymization algorithm.

3.1 Problem Description

The microdata p-sensitive k-anonymization problem can be formulated as follows:

Definition 7 (p-sensitive k-anonymization problem): Given a microdata IM, the p-
sensitive k-anonymization problem for IM is to find a partition S = {cl1, cl2, … , clv}

of IM, where clj ⊆ IM, j=1..v, are called clusters and: =
=
∪
v

j
jcl

1

IM ; =∩ ji clcl ∅, i, j =

1..v, i≠j ; |clj | ≥ k and clj is p-sensitive, j=1..v ; and a cost measure is optimized.

Once a solution S to the above problem is found for a microdata IM, a masked
microdata MM that is p-sensitive and k-anonymous is formed by generalizing the
quasi-identifier attributes of all tuples inside each cluster of S to the same values. The
generalization method consists in replacing the actual value of an attribute with a less
specific, more general value that is faithful to the original [17].

132 T. M. Truta, A. Campan, and P. Meyer

For categorical attributes we use generalization based on predefined hierarchies
[9]. For numerical attributes we use the hierarchy-free generalization [12], which
consists in replacing the set of values to be generalized to the smallest interval that
includes all the initial values. For instance, the values: 25, 39, 36 are generalized to
the interval [25-39]. It is worth noting that the values for sensitive attributes remain
unchanged within each cluster.

The anonymization of the initial microdata must be conducted to preserve data
usefulness and to minimize information loss. In order to achieve this goal, we
generalize each cluster to the least general tuple that represents all tuples in that
group. We call generalization information for a cluster the minimal covering tuple for
that cluster, and we define it as follows.

Definition 8 (generalization information): Let cl = {r1, r2, …, rq} ∈ S be a cluster,
KN = {N1, N2, ..., Ns} be the set of numerical quasi-identifier attributes and KC = {C1,
C2,,…, Ct} be the set of categorical quasi-identifier attributes. The generalization
information of cl, w.r.t. quasi-identifier attribute set K = KN ∪ KC is the “tuple”
gen(cl), having the scheme K, where:

 For each categorical attribute Cj ∈ K , gen(cl)[Cj] = the lowest common ancestor
in HCj of {r1[Cj], r2[Cj], … , rq[Cj]}, where HC denotes the hierarchies (domain
and value) associated to the categorical quasi-identifier attribute C;

 For each numerical attribute Nj ∈ K , gen(cl)[Nj] = the interval [min{r1[Nj],
r2[Nj], … , rq[Nj]}, max{r1[Nj], r2[Nj], … , rq[Nj]}].

For a cluster cl, its generalization information gen(cl) is the tuple having as value for
each quasi-identifier attribute, numerical or categorical, the most specific common
generalized value for all that attribute values from cl tuples. In MM, each tuple from
the cluster cl will be replaced by gen(cl).

There are several possible cost measures that can be used as optimization criterion
for the p-sensitive k-anonymization problem [3, 4, etc.]. A simple cost measure is
based on the size of each cluster from S. This measure, called discernability metric
(DM) [3] assigns to each record x from IM a penalty that is determined by the size of
the cluster containing x:

DM (S) = ∑
=

v

j
jcl

1

2|)(| . (2)

 LeFevre introduced an alternative measure, called the normalized average cluster
size metric (AVG) [12]:

AVG (S) =
kv

n

⋅
 , (3)

where n is the size of the IM, v is the number of clusters, and k is as in k-anonymity.
It is easy to notice that the AVG cost measure is inversely proportional with the

number of clusters, and minimizing AVG is equivalent to maximizing the total
number of clusters.

The last cost measure we present is the information loss caused by generalizing
each cluster to a common tuple [4, 20]. This is an obvious measure to guide the

 Generating Microdata with P-Sensitive K-Anonymity Property 133

partitioning process, since the produced partition S will subsequently be subject to
cluster-level generalization.

Definition 9 (cluster information loss): Let cl ∈ S be a cluster, gen(cl) its
generalization information and K = {N1, N2, .., Ns, C1, C2, .., Ct} the set of quasi-
identifier attributes. The cluster information loss caused by generalizing cl tuples to
gen(cl) is:

IL(cl) = || cl ⋅ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∑

=

∈∈

s

j
j

r
j

r

j

NrNrsize

Nclgensize

1][max],[min

]))[((

IMIM

⎟
⎟

⎠

⎞Λ
+∑

=

t

j C

j

j
Hheight

Cclgenheight

1)(

])))[(((,

(4)

where:

 |cl| denotes the cluster cl cardinality;
 size([i1, i2]) is the size of the interval [i1, i2] (the value i2-i1);

 Λ(w), w∈HC j is the subhierarchy of HC j rooted in w;
 height(HC j) denotes the height of the tree hierarchy HC j.

Definition 10 (total information loss): Total information loss for a solution S = {cl1,
cl2, … , clv} of the p-sensitive k-anonymization problem, denoted by IL(S), is the sum
of the information loss measure for all the clusters in S:

IL(S) = ∑
=

v

j
jclIL

1

)((. (5)

In order to achieve p-sensitive k-anonymity for each cluster, we need to address the p-
sensitive part with uttermost attention. While the k-anonymity is satisfied for each
individual cluster when its size is k or more, the p-sensitive property is not so obvious
to achieve. To help us in this process we introduce two diversity measures that
quantify, with respect to sensitive attributes, the diversity between a tuple and a
cluster and the homogeneity of a cluster.

Let Xi, i = 1 ... n, be the tuples from IM subject to p-sensitive k-anonymization. We
denote an individual tuple by },...,,,...,{ 11

i
r

ii
q

ii sskkX = , where ki s are the values for the

quasi-identifier attributes and si s are the values for the confidential attributes.

Definition 11 (diversity between a tuple and a cluster): The diversity between a tuple
Xi and a cluster cl w.r.t. the confidential attributes is given by:

Div(X i, cl) = i

r

i
iii wypyy ⋅−⋅−∑

=1

')()(, where (6)

 iy – is the number of distinct values for attribute Si (1 ≤ i ≤ r) in cl if this

number is less than p, and p otherwise.

134 T. M. Truta, A. Campan, and P. Meyer

 '
iy – is the number of distinct values for attribute Si (1 ≤ i ≤ r) in cl’ = cl ∪ {X i}

if this number is less than p, and p otherwise. It is easy to show that for each i =

1 … r, '
iy is either iy or iy + 1.

 (w1, w2, …, wr) – is a weight vector, 1
1

=∑
=

r

l
lw . The data owner can choose

different criteria to define this weights vector. One possible selection of the
weight values is to initialize them as inversely proportional to the number of
distinct sensitive attribute values in the microdata IM (defined as si values). In
the experimental section we chose to use the same value for all the weights.

Definition 12 (cluster homogeneity): The homogeneity of a cluster cl w.r.t. the
confidential attributes is given by:

Hom(cl) = i

r

i
i wyp ⋅−∑

=1

)(, (7)

where yi and wi have the same meaning as in the previous definition.

Property 1: A cluster cl is p-sensitive w.r.t. all confidential attributes S1, S2, …, Sr iif
Hom(cl)=0.

Proof: This property follows directly from the definition of cluster homogeneity.

3.2 The EnhancedPKClustering Algorithm

First, we introduce two total order relations that will help us present our algorithm.

Definition 13 (≥h relation): Let Si and Sj be two sensitive attributes. The following
relation Si ≥h Sj is true if and only if maxClustersi ≤ maxClustersj where maxClustersl
is computed for IM with only one sensitive attribute Sl, l = i, j, given p and k. We use
the term Si is harder than or as hard as Sj to make sensitive for Si ≥h Sj.

Definition 14 (≥d relation): Let cli and clj be two clusters. The following relation cli
≥d clj is true if and only if Hom(cli) ≤ Hom(clj), for a given p. We use the term cli is
more diverse than or as diverse as clj for cli ≥ d clj.

Property 2: Let maxClusters be as defined in Section 2.2. Let S1 harder than or as
hard as every other confidential attribute to make sensitive as defined in Definition
13. Let iVal be the smallest value between 1 and p such that

⎥
⎦

⎥
⎢
⎣

⎢ −
= −

iVal

cfn iValp smaxCluster . The relation smaxClusterSECi ≤|| 1 holds for all i ≥ p-

iVal+1 for which 1
iSEC are defined.

Proof: From the definition of sensitive equivalence classes, the larger the value of i
the smaller the cardinality of SEC’s; therefore, it is enough to prove that

smaxClusterSEC iValp ≤+− || 1
1 holds.

From maxClusters definition and the selection of iVal we have:

 Generating Microdata with P-Sensitive K-Anonymity Property 135

⎥
⎦

⎥
⎢
⎣

⎢
−

−
<⎥

⎦

⎥
⎢
⎣

⎢ −
= +−−

1
1

iVal

cfn

iVal

cfn
smaxCluster iValpiValp (8)

As S1 is the hardest to make sensitive attribute and from definition of cumulative
frequencies it follows that:

|||| 1
1

1
1

11
11 +−−+−−+−+− +=+=≥ iValpiValpiValpiValpiValpiValp SECcfSECcfcfcf (9)

From (8) and (9) the following relation holds:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

−

+−
<

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ − +−−−

1

)||(1
1

iVal

SECcfn

iVal

cfn iValpiValpiValp (10)

Assuming smaxClusterSEC iValp >+− || 1
1 ⇒

iVal

cfn
SEC

iValp
iValp

−
+−

−
>|| 1

1

(11)

Using relations (10) and (11) we obtain:

() .1 ⎥
⎦

⎥
⎢
⎣

⎢ −
=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−<⎥

⎦

⎥
⎢
⎣

⎢ − −−
−

−

iVal

cfn
iVal

iVal

cfn
cfn

iVal

cfn iValpiValp
iValp

iValp (12)

As a result, our assumption is false and the property smaxClusterSECi ≤|| 1 holds for

all i ≥ p-iVal+1. Q.E.D.

The EnhancedPKClustering algorithm finds a solution for the p-sensitive k-
anonymization problem for a given IM. It considers AVG (or the partition cardinality)
that has to be maximized as the cost measure.

This algorithm starts by enforcing the p-sensitive part using the properties proved
for the p-sensitive k-anonymity model. The tuples from IM are distributed to form p-
sensitive clusters with respect to the sensitive attributes. After p-sensitivity is
achieved, the clusters are further processed to satisfy k-anonymity requirement as
well. A more detailed description of how the algorithm proceeds follows.

In the beginning, the algorithm determines the p-sensitive equivalence classes,
orders the attributes based on the harder to make sensitive relation, and computes the
value iValue that divides the p-sensitive equivalence classes into two categories: one
with less frequent values for the hardest to anonymize attribute and one with more
frequent values. Now, the QI-clusters are created using the following steps:

 First, the tuples in the less frequent category of p-sensitive equivalence classes
are divided into maxClusters clusters (Split function) such that each cluster will
have iValue tuples with iValue distinct values within each cluster for attribute S1
(the hardest to anonymize).

 Second, the remaining p-sensitive equivalence classes are used to fill the clusters
such that each of them will have exactly p tuples with p distinct values for S1.

 Third, the tuples not yet assigned to any cluster are used to add diversity for all
remaining sensitive attributes until all clusters are p-sensitive. If no tuples are
available, some of the less diverse (more homogenous) clusters are removed and
their tuples are reused for the remaining clusters. At the end of this step all
clusters are p-sensitive.

136 T. M. Truta, A. Campan, and P. Meyer

 Fourth, the tuples not yet assigned to any cluster are used to increase the size of
each cluster to k. If no tuples are available, some of the less populated clusters
are remov`ed and their tuples are reused for the remaining clusters. At the end of
this step all clusters are p-sensitive k-anonymous.

Along all the steps, when a choice is to be made, one or more optimization criteria are
used (diversity between a tuple and a cluster, and increase in information loss).

Algorithm EnhancedPKClustering is
Input IM – initial microdata;

p, k – as in p-sensitive k-anonymity;
Output S ={cl1,cl2,…,clv} - a solution for the p-sensitive k-anonymi-

zation problem for IM;

Reorder S1, S2, …, Sr such that Si ≥h Sj, i, j = 1..v, i > j;

;min
,1

⎥
⎦

⎥
⎢
⎣

⎢ −
= −

= i

cfn
smaxCluster ip

pi

;..1, | min
⎭
⎬
⎫

⎩
⎨
⎧

=⎥
⎦

⎥
⎢
⎣

⎢ −
== − pi

i

cfn
smaxClusteriiValue ip

for i = 1 to maxClusters do cli = ∅;
S = {cl1, cl2, … , clmaxClusters};

};,...,,{ 11
2

1
1 piValuepiValuep pSECpSECpSECU +−+−=

// Based on Condition 2, the tuples in U can be allocated to
// maxClusters clusters, each having iValue different values for S1
Split (U, S, E);
for j = p-iValue down to 1 {
 ; auxSEC 1

jpSEC= auxS = S;

 while (auxS ≠ ∅) {
 (tuple, cl) = BestMatch(auxSEC, auxS); // maximize diversity
 cl = cl ∪ {tuple};
 auxSEC = auxSEC – {tuple};
 auxS = auxS – {cl};
 } // end while
} // end for.
// Now p-sensitive property holds w.r.t. S1

// T contains leftover tuples from pSEC’s plus tuples from E.
Let T be the set of tuples not assigned yet to any cluster from S.
Reorder clusters from S, such that cli ≥d clj, i,j = 1..maxClusters, i>j;
h = 1;
while (Hom(clh) == 0) h= h + 1;
//clh the first cluster without p-sensitivity
aux = maxClusters;
while (h ≤ aux) {
 while (h ≤ aux) && (T ≠ ∅) {
 (tuple, clh) = BestMatch(T, {clh});
 clh = clh ∪ {tuple}; T = T – {tuple};
 if (Hom(clh) == 0) h = h + 1;
 }
 if (T == ∅) && (h ≤ aux) {
 T = claux;
 aux = aux - 1; // redistribute T
 }
} // p-sensitivity property holds for all clusters.

 Generating Microdata with P-Sensitive K-Anonymity Property 137

// the set T (possible empty) must be spread.
Reorder S based on the number of tuples in each cluster(|cli| ≥ |clj|,
i,j = 1..aux, i > j;)
u = 1;
while (|clu| ≥ k) u = u + 1;
// cli with i > u are not k-anonymous.

;
||...||||

 u aux,min v 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢ +++

+= +

k

clclT auxu

if (v < aux) T = T ∪ {t ∈ cli | i = v + 1 ,.., aux};
for i = 1 to totalClusters do {
 while (|cli| < k) {
 Find a tuple such that IL(cli ∪ {tuple}) = min{IL(cli∪{t})| t ∈ T);
 cli = cli ∪ {tuple};
 T = T – {tuple};
 }
} // p-sensitive k-anonymity is achieved

for every t ∈ T do { // extra tuples left in T are distributed
 Find cl such that IL(cl ∪ {t}) – IL(cl)
 = min(IL(cli∪{t}) – IL(cli)| i = 1,..,v);
 cl = cl ∪ {t};
}
End EnhancedPKClustering;

Function Split(U, S, E)
 },..,{ 11

1 piValuep pSECpSECU +−= },..,,,..,{ 11
1

11
1 1sppiValuep SECSECSECSEC ++−= ;

 i = 1;
 for j = s1 down to p - iValue + 1 do {

 auxSEC =
1
jSEC ;

 // tuples are assigned to clusters in a circular way; any two tuples
 // from the same auxSEC will belong to distinct clusters. (Prop. 2)
 while (auxSEC ≠ ∅) {
 (t, cli) = BestMatch(auxSEC, {cli});
 auxSEC = auxSEC – {t};
 cli = cli ∪ {t};
 i = i + 1;
 if (i > |S|) then
 if (|cl1| < iValue) then i = 1
 else {
 // each cluster has iValue tuples
 E = all tuples in U not assigned; return; }
 }
 }
End Split;

Function BestMatch(auxSEC, auxS)
 Find the set Pairs of all pairs (ti, clj) such that Div(ti,clj) =
 max{Div(t,cl) | (t,cl) ∈ auxSEC × auxS}; // maximize diversity
 Return any pair (t,cl) ∈ Pairs such that IL(cl ∪ {t})–IL(cl) =
 min{IL(clj ∪ {ti})–IL(clj)| (ti,clj) ∈ Pairs}; // minimize IL
End BestMatch;

138 T. M. Truta, A. Campan, and P. Meyer

Informally, we state that the complexity of the EnhancedPKClustering algorithm is
O(n2). A complete complexity analysis of the algorithm will be presented in the full
version of the paper.

4 Preliminary Results

In this section we report the experiments we have conducted to compare, for the p-
sensitive k-anonymity model, the performance of EnhancedPKClustering algorithm
against: an adapted version of Incognito algorithm [11] and the GreedyPKClustering
algorithm [6]. We intend to extend our experiments and perform comparative tests
with other algorithms proposed to enforce models equivalent with p-sensitive k-
anonymity (l-diversity, (α, k)-anonymity, and t-closeness). However, we think that an
algorithm based on global recoding will produce weaker results (in terms of any cost
measure) compared to a local recoding algorithm (such as EnhancedPKClustering or
GreedyPKClustering), and this without connection to a specific anonymity model.

All three algorithms have been implemented in Java, and tests were executed on a
dual CPU machine running Windows 2003 Server with 3.00 GHz and 1 GB of RAM.

A set of experiments has been conducted for an IM consisting in 10000 tuples
randomly selected from the Adult dataset from the UC Irvine Machine Learning
Repository [15]. In all the experiments, we considered age, workclass, marital-status,
race, sex, and native-country as the set of quasi-identifier attributes; and
education_num, education, and occupation as the set of confidential attributes.
Microdata p-sensitive k-anonymity was enforced in respect to the quasi-identifier
consisting of all 6 quasi-identifier attributes and all 3 confidential attributes. Although
many values of k and p were considered, due to space limitations, we present in this
paper only a small subset of the results.

 Fig. 3 shows comparatively the AVG and DM values of the three algorithms,
EnhancedPKClustering, GreedyPKClustering and Incognito, produced for k = 20 and
different p values. As expected, the results for the first two algorithms clearly
outperform Incognito results. We notice that EnhancedPKClustering is able to
improve the performances of the GreedyPKClustering algorithm in cases where
solving the p-sensitivity part takes prevalence over creating clusters of size k.

 Fig. 4 left shows comparatively the DM and AVG values obtained by
EnhancedPKClustering algorithm divided by the same values computed using
GreedyPKClustering algorithm. We notice that for p = 2 and 4 there is no
improvement. In these cases both algorithms were able to find the optimal solution in
terms of DM and AVG values. As soon as the p-sensitive part is hard to achieve, the
EnhancedPKClustering algorithm performs better. Fig. 4 right shows the time
required to generate the masked microdata by all three algorithms. Since Incognito
uses global recording and our domain generalization hierarchies for this dataset have
a low height, the running time is very fast. The GreedyPKClustering is faster than the
new algorithm for small values of p, but when it is mode difficult to create p-
sensitivity within each cluster the EnhancedPKClustering has a slight advantage.
Based on these results, it is worth noting that a combination of GreedyPKClustering

 Generating Microdata with P-Sensitive K-Anonymity Property 139

Fig. 3. AVG and DM for EnhancedPKClustering, GreedyPKClustering, and Incognito

Fig. 4. Comparison between EnhancedPKClustering and GreedyPKClustering in terms DM
and AVG values and the running time of all three algorithms

(for low values of p, in our experiment 2 and 4) and EnhancedPKClustering (for high
values of p, in our experiment 6, 8, and 10) would be desirable in order to improve
both running time and the selected cost measure (AVG or DM).

5 Conclusions and Future Work

In this paper, a new algorithm to generate masked microdata with p-sensitive k-
anonymity property was introduced. The algorithm uses several properties of the p-
sensitive k-anonymity model in order to efficiently create the masked microdata that
satisfy the privacy requirement. Our experiments have shown that the proposed
algorithm improves both AVG and DM cost measures over existing algorithms. As
our algorithm is based on local recoding (cluster-level generalization) and accepts
multiple sensitive attributes, it leads to better results than the Incognito algorithm, but
it also outperforms the local recoding based GreedyPKClustering algorithm. Two
diversity measures that help characterize this similarity of sensitive attributes values
within each cluster are also introduced.

 We believe that the EnhancedPKClustering algorithm could be used for enforcing
(α, k)-anonymity, l-diversity, or the new introduced t-closeness on microdata as well.

Acknowledgments. This work was supported by the Kentucky NSF EPSCoR
Program under grant “p-Sensitive k-Anonymity Property for Microdata”.

1.
00

1.
00

1.
00

1.
00 1.
37

10
.6

4

1.
00

1.
00

1.
01 1.
32 2.

05

1
0.

87 2
50

.0
0

25
0

.0
0

5
0.

00

50
.0

0

50
.0

0

50
.0

0

0.00

5.00

10.00

15.00

2 4 6 8 10 13

AVG values for k = 20, p - variable

EnhancedPKClustering GreedyPKClustering Incognito

20
0

00
0

20
0

00
0

20
0

00
0

20
0

00
0

28
37

40

21
44

63
6

20
0

00
0

20
0

00
0

20
3

17
8

37
39

2
6

7
24

73
2

23
29

93
6

50
0

95
9

22

3
16

56
81

8

31
65

68
18

31
65

68
18

31
65

68
18

31
65

68
18

0

1000000

2000000

3000000

1 2 3 4 5 6

DM values for k = 20, p - variable

EnhancedPKClustering GreedyPKClustering Incognito

1.
00

1.
00

1.
44

2.
43

3.
68

1.
00

1.
00 1.

22

1.
25 1.
41

0.00

1.00

2.00

3.00

4.00

2 4 6 8 10

k = 10, p - variable

DM Greedy / DM Enhanced AVG Greedy / AVG Enhanced

0.00

400.00

800.00

1200.00

1600.00

2000.00

2400.00

2 4 6 8 10

Running Time (sec), k = 10, p- variable

Enhanced Greedy Incognito

140 T. M. Truta, A. Campan, and P. Meyer

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu,
A.: Anonymizing Tables. In: Proceedings of the ICDT, pp. 246–258 (2005)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic Databases. In: Proceedings of
the VLDB, pp. 143–154 (2002)

3. Bayardo, R.J, Agrawal, R.: Data Privacy through Optimal k-Anonymization. In:
Proceedings of the IEEE ICDE, pp. 217–228. IEEE Computer Society Press, Los Alamitos
(2005)

4. Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymity using Clustering
Technique. CERIAS Tech. Report 2006-10 (2006)

5. Campan, A., Truta, T.M.: Extended P-Sensitive K-Anonymity. Studia Universitatis Babes-
Bolyai Informatica 51(2), 19–30 (2006)

6. Campan, A., Truta, T.M., Miller, J., Sinca, R.A.: Clustering Approach for Achieving Data
Privacy. In: Proceedings of the International Data Mining Conference (2007)

7. HIPAA.: Health Insurance Portability and Accountability Act (2002), Available online at:
http://www.hhs.gov/ocr/hipaa

8. ICD9.: International Classification of Diseases. Available online at:
 http://icd9cm.chrisendres.com/index.php

9. Iyengar, V.: Transforming Data to Satisfy Privacy Constraints. In: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
279–288. ACM Press, New York (2002)

10. Lambert, D.: Measures of Disclosure Risk and Harm. Journal of Official Statistics 9, 313–
331 (1993)

11. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Efficient Full-Domain K-
Anonymity. In: Proceedings of the ACM SIGMOD, pp. 49–60. ACM Press, New York
(2005)

12. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity.
Proceedings of the IEEE ICDE, 25 (2006)

13. Li, N., Li, T., Venkatasubramanian, S.: T-Closeness: Privacy Beyond k-Anonymity and l-
Diversity. Proceedings of the IEEE ICDE (2007)

14. Machanavajjhala, A., Gehrke, J., Kifer, D.: L-Diversity: Privacy beyond K-Anonymity.
Proceedings of the IEEE ICDE, 24 (2006)

15. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning
Databases, UC Irvine (1998), http://www.ics.uci.edu/~ mlearn/MLRepository.html

16. Samarati, P.: Protecting Respondents Identities in Microdata Release. IEEE Transactions
on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

17. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. and Knowledge-based
Systems 10(5), 557–570 (2002)

18. Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and
Suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-based
Systems 10(5), 571–588 (2002)

19. Truta, T.M., Bindu, V.: Privacy Protection: P-Sensitive K-Anonymity Property.
Proceedings of the Workshop on Privacy Data Management, In Conjunction with IEEE
ICDE, 94 (2006)

20. Truta, T.M., Campan, A.: K-Anonymization Incremental Maintenance and Optimization
Techniques. In: Proceedings of the ACM SAC, pp. 380–387. ACM Press, New York
(2007)

 Generating Microdata with P-Sensitive K-Anonymity Property 141

21. Winkler, W.: Matching and Record Linkage. In: Business Survey Methods, Wiley,
Chichester (1995)

22. Wong, R.C-W., Li, J., Fu, A.W-C., Wang, K.: (α, k)-Anonymity: An Enhanced k-
Anonymity Model for Privacy-Preserving Data Publishing. In: Proceedings of the ACM
KDD, pp. 754–759. ACM Press, New York (2006)

23. Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: Proceedings of the ACM
SIGMOD, pp. 229–240. ACM Press, New York (2006)

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 142–157, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Preventing Privacy-Invasive Software Using
Collaborative Reputation Systems

Martin Boldt, Bengt Carlsson, Tobias Larsson, and Niklas Lindén

Blekinge Institute of Technology, Box 520, SE-372 25, Sweden
{martin.boldt,bengt.carlsson,tola01,nili02}@bth.se

Abstract. Privacy-invasive software, loosely labelled spyware, is an
increasingly common problem for today’s computer users, one to which there is
no absolute cure. Most privacy-invasive software is positioned in a legal grey
zone, as the user accepts the malicious behaviour when agreeing to the End
User License Agreement. This paper proposes the use of a specialized
reputation system to gather and share information regarding software behaviour
between community users. A client application helps guide the user at the point
of executing software on the local computer, displaying other users’ feedback
about the expected behaviour of the software. We discuss important aspects to
consider when constructing such a system, and propose possible solutions.
Based on the observations made, we implemented a client/server based proof-
of-concept tool, which allowed us to demonstrate how such a system would
work. We also compare this solution to other, more conventional, protection
methods such as anti-virus and anti-spyware software.

Keywords: Information security, malware prevention, reputation systems.

1 Introduction

Our society is continuously moving in an increasingly more computerized direction
where software has a central role [15][28]. Because of this development computer
users are in need of more aiding mechanisms to help them distinguishing legitimate
software from its questionable counterparts. Without such mechanisms we will
experience a gradual increase in the negative consequences resulted by such software,
affecting more and more of our daily lives by involving for instance mobile devices
and media centres. Sources indicate that well over 80% of all home PCs and more
than 30% of all corporate PCs connected to the Internet are infected by questionable
software, often labelled spyware [32][37]. Affected computer owners are not aware of
the fact that their computer is infected with spyware since they rely entirely on anti-
virus software and firewalls to protect them. However, anti-virus software does not
focus on spyware, but rather on more malicious software types, such as viruses,
worms and Trojan horses [2].

Although some spyware programs might be malicious, many are considered to be
legitimate software distributed by highly profitable companies that are gathering
information about its users, showing targeted ads, sending user behaviour patterns,

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 143

visited websites and similar, storing them for an unknown period of time as user
profiles in central databases. Spyware are often in a legal grey zone since they
normally inform the users of their actions, but often in such a format that it is
unrealistic to believe that normal computer users will read and understand the
provided information. The End User License Agreement (EULA) that the user has to
agree on before using or installing the software are often written in a legal format,
sometimes spanning well over 5000 words, and most users choose to proceed without
actually studying it, giving his or her consent to whatever might be stated in the
EULA, i.e. anything the software developer wants [7][14][31].

There are numerous ongoing projects and attempts to produce effective
countermeasures for removing spyware [22][25][33]. However, this requires a
classification of some software as “harmful to the user” which is legally problematic.
The main reason for this is because the information regarding system behaviour is
stated in the license agreement that the user already has accepted, which could lead to
law suits [14][34]. Such legal disputes have already proved to be costly for anti-
spyware software companies [29]. As a result of this, they may be forced to remove
certain software from their list of targeted spyware to avoid future legal actions, and
hence deliver an incomplete product to their customers, being unable to correctly
classify some software as privacy-invasive.

As the problem of spyware is widely spread, and no complete protection is
available, there is a need for ways to better inform the user about the software he or
she uses, while still not classifying it as “harmful to the user” and hence risking law
suits. There are numerous well-known and popular websites based on the concept of
letting users grade different services, applications, shops, and similar e.g., Flixster,
IMDb.com, and Pricerunner [12][18][26]. The main concept is to help guide other
consumers to, for example, find the best store to shop at and to avoid pitfalls and
unethical sellers [38]. We have combined this concept with a client software that
helps guide the user whenever a program is about to execute on his computer, by
showing other users rating and comments of the particular software. Larsson and
Lindén implemented this idea into a proof-of-concept tool during their masters thesis
work1[21]. In this system the users are asked to rate their most frequently used
software, by grading it between 1 and 10. In return they are given access to
aggregated ratings for all software in the reputation system. By using the knowledge
from previous users it is possible for new users to reach more informed decisions
when installing a specific software, i.e. allowing them to stop questionable software
before it enters their computer. The proof-of-concept tool has found a group of
continuous users, which has rendered in well over 2000 rated software programs in
the reputation database.

1.1 Background and Related Work

The usage of the term spyware has become increasingly popular, both by users, media
and software vendors [1][30]. It has been defined as software that “track users’
activities online and offline, provide targeted advertising, and/or engage in other types
of activities that users describe as invasive or undesirable [8][13]. This means that it

1 The tool is available for free from: http://www.softwareputation.com

144 M. Boldt et al.

has come to include all kinds of malicious software, ranging from software that
displays advertisements based on user behaviour (adware) to Trojan key loggers, as
well as actual spying software (spyware) [31]. A better term to use instead of
spyware, would be privacy-invasive software (PIS). In an attempt to clarify the usage
of this term, Boldt and Carlsson based their classification of privacy-invasive
software on user’s informed consent and negative user consequence, as shown in
Table 1 [4][5].

Table 1. Classification of privacy-invasive software with respect to user’s informed consent
(high, medium and low) and negative user consequences (tolerable, moderate and severe)

Tolerable
Negative
Consequences

Moderate
Negative
Consequences

Severe
Negative
Consequences

High

Consent

1)
Legitimate

software

2)
Adverse

software

3)
Double

agents

Medium

Consent

4)

Semi-transparent
software

5)
Unsolicited

software

6)

Semi-parasites

Low

Consent

7)
Covert

software

8)
Trojans

9)

Parasites

User consent is specified as either low, medium or high, while the degree of
negative consequences span between tolerable, moderate, and severe. This
classification allows us to first make a distinction between legitimate software and
spyware, and secondly between spyware and malicious software (malware). All
software that has low user consent, or which impairs severe negative consequences
should be regarded as malicious software. While, on the other hand, any software that
has high user consent, and which results in tolerable negative consequences should be
regarded as legitimate software. By this follows that spyware constitutes the
remaining group of software, i.e. those that have medium user consent or which
impair moderate negative consequences.

We base our work on Simone Fischer-Hübner’s definition of privacy, in which she
divides the concept into the following three areas [11]:

• territorial privacy focusing on the protection of the public area surrounding a
person, such as the workplace or the public space

• privacy of the person which protect the individual from undue interference that
constitute for instance physical searches and drug tests

• informational privacy protecting if and how personal information (information
related to an identifiable person) is being gathered, stored, processed, and
further disseminated.

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 145

Since our work has its origin in a computer setting we interpret the above three
areas into a computer context. We argue that this is motivated since computers are
being increasingly more weaved together with our daily lives, affecting individuals’
privacy. Our classification of privacy-invasive software is related to the last two areas
listed above, i.e. protecting the user from undue interference, and safeguarding users’
personal information, while using computers. Therefore our view of privacy does not
only focus on the communication of personal information, but it also includes undue
interference that negatively affects the users’ computer experience.

In an attempt to mitigate the negative effects from PIS we propose the use of a
reputation system where computer users collaborate with the goal to distinguish
legitimate software from PIS. As described by Resnick et al. a reputation system
“collects, distributes, and aggregates feedback about participants’ past behaviour”
[27]. This can either be part of a larger system, to give the users incentives to behave
well in the future knowing that other users will be able to review past transactions e.g.
on an auction site, or as a system itself used for rating e.g. resellers of home
appliances, Hollywood blockbusters, or basically any kind of product or service. This
helps new users to establish a trust relationship towards a particular reseller or
company based on other users’ past opinions about the other party, without any
personal contact with the reseller or company in question. This is increasingly
important considering the present development rate for e-commerce and online
services where customers seldom, if ever, meet the business representatives they are
dealing with.

2 Important Considerations

There are two main issues that need to be addressed when considering the design and
implementation of the proposed system. How to protect users’ privacy and at the
same time address incorrect information in the system. We will address these two
considerations individually; explaining the problem at hand, as well as proposing one
or more possible solutions that may help prevent the problem, or at least reduce the
impact of it [9].

2.1 Addressing Incorrect Information

There are a number of aspects to take into consideration when building a system that
is to gather, store and present information from multiple, unknown users. Although
the system has been set up for a clear purpose, individual users, or groups of users,
may find it more interesting to – for instance – intentionally enter misleading
information to discredit a software vendor they dislike, use multiple computers in a
distributed attack against the system to fill the database with bogus votes, enter
irrelevant or indecent comments, and so on. When it comes to inventing new ways of
disturbing peace, the stream of ideas seems to be never-ending.

Even though it may be done without malice, even in good faith, ignorant users
voting and leaving feedback on programs they know nothing or little about may be a
rather big problem for a software reputation system, especially at a budding phase. If
the number of users is low, compared to the number of software to be rated, there is a

146 M. Boldt et al.

big risk that many software will be without any, or with just a few, votes. Even worse,
if these few votes and comments have been given by users with little actual
knowledge about the software they are rating, they may – for example – give the
installer of a program bundled with many different PIS a high rating, commenting that
it is a great free and highly recommended program. In a normal environment, this
would not be a problem, as a number of more experienced users would already have
added negative feedback, warning other users of the potential dangers with installing
this software package. However, in the cases where there are few users and votes
available at any point of time, this may be a big problem.

We have identified three different approaches to mitigate the problem with
unintentionally incorrect information. The first one involves allowing the users to rate
not only the software but also the feedback of other users in terms of helpfulness,
trustworthiness and correctness, creating a reliability profile for each user. This
profile could be thought of as a trust factor that is used to weight the ratings of
different users, making the votes and comments of well-known, reliable users more
visible and influential than those of new users. It does not directly handle the problem
of inexperienced users giving incorrect information and ratings, if they are the only
ones commenting and voting, but as soon as more experienced users give
contradicting votes, their opinions will carry a higher weight, tipping the balance in a
– hopefully – more correct direction.

The second approach is to use bootstrapping of the program database at an early
stage, preferably before the system is put to use, copying the information from an
existing, more or less reliable, software rating database of programs and their individual
ratings into the database of the reputation system. That way, it would be possible to
ensure that no common program has few or zero votes, and in the event of novice users
giving the software unfair positive or negative ratings and comments, the number of
existing votes would make their votes one out of many, rather than the one and only.

The third approach would be to have one or more administrators keeping track of
all ratings and comments going into the system, verifying the validity and quality of
the comments prior to allowing other users to view them, as well as working on
keeping the program database updated, giving expert advice on certain programs,
such as well-known white listed applications, etc. However, once the number of users
has reached a certain level, this would require a lot of manual work, which could
become expensive for maintaining a free program, as well as seriously decrease the
frequency of vote updates.

In addition to the problem with users that unintentionally provide the reputation
system with incorrect information is the more complex threat by individuals, or
groups of people, that decide to purposely abuse the systems. In the preventive anti-
PIS reputation system, one such attack would be to intentionally try to enter a massive
amount of incorrect data into the database. Either to slow the system down, or even
crash it, or to target specific applications, trying to subject them to positive or
negative discrimination. The main question when it comes to vote flooding is how to
allow normal users to be able to vote smoothly and yet be able to address abusive
users that attack the system.

An important aspect to take into consideration is that the server must ensure that
each user only votes for a software program exactly once. A common solution to this
kind of problem would be to let the user register a user account at the server before

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 147

being able to activate the client software. For each user account, only one vote and
comment can be registered for a specific software. Using some non-automatable
process, such as image verification, and requiring a valid e-mail address during the
registration of a new user account would help prevent the system for users trying to
automatically create a number of new accounts to avoid the limit imposed on the
number of votes each user can give to each software [10].

2.2 Protecting Users’ Privacy

As the system is built for protecting peoples’ privacy, we need to make sure the
system itself does not intrude on it more than absolutely necessary. If the system
would store sensitive information about its users, such as IP addresses, e-mail address,
and linking these to all software the user has ever cast a vote on, the system owner
would control this sensitive information. Any leakage of such information e.g.,
through an attack on the reputation system database, could have serious consequences
for all users. An attacker getting access to this information would find a list of hosts
and software running on each host, where some of them could be vulnerable to remote
exploits. However, not storing any data about which users have cast votes on a
particular software could lead to vote flooding and similar, as the system would have
no way of ensuring that a user only votes once.

As we need to make sure no users can vote more than once on each particular
software, we cannot get rid of the concept of users and user accounts. However, one
approach would be to ensure that all kinds of sensitive information that can be of use
for an attacker, such as IP address, e-mail address, name, address, city, or similar, are
excluded from the user information stored in the database of the reputation system
server. The only thing necessary to store is some kind of unique identifier for each
user, such as a user name.

As mentioned in the previous section, we need to prevent users from signing up
several times in an automatic way, and one way of doing this would be to use their e-
mail address as an identification item. However, this requires us to store the e-mail
address in the database which might not be something that people would like to store
in a database that keeps track of which software they are running and their opinions
on it. A solution to this would be to only keep a hash value of the e-mail address, as
this can be used to discover that two e-mail addresses are equal, while it is impossible
to recreate the e-mail address from the hash value. However, it would still be possible
to guess the correct e-mail address if relying on a brute force approach. This problem
could be further solved by concatenating the e-mail address with a secret string before
calculating the hash, rendering brute force attack to be computationally impossible as
long as the secret string is kept secret. Protection of users’ anonymity could be
established by utilizing distributed anonymity services, such as Tor, for all
communication between the client and the server [36]. This would further increase
user’s privacy by their IP address from the reputation system owner.

3 System Design

As we have illustrated in the previous section, there are numerous aspects to take into
consideration when designing a reputation system such as this. Information has to be

148 M. Boldt et al.

gathered from the reputation system users in a way that address different ways of
abuse, without interfering with normal usage and / or the protection of the users’
privacy. When considering votes and comments, the system has to be able to handle
possible abuse, as well as to properly balance the weight of different users’ ratings
and allow users to grade each others, thus improving the credibility of the more expert
users and degrading users not taking voting and commenting in the system seriously.

The system will be comprised of three major parts, a client with a graphical user
interface (GUI) running on each users’ workstation, a server running on one or more
machines handling all requests and commits from the clients, as well as a database
storing all data. The system will also offer a web based interface, which gives the
users more possibilities in searching the information stored in the database. This will
be used as an extension to the GUI client, where users e.g. can read more information
about some particular software program or vendor along with all the comments that
have been submitted.

3.1 Client Design

The most important functionality of the client is the ability to allow its users to decide
exactly what software is allowed to run on the computer, i.e. blocking all software
which the user have not explicitly given his/her permission to. This filtering capability
is implemented using a hooking device that captures the execution calls from the
Windows API, in order to allow the user to choose whether or not he or she really
wants to proceed with the execution of that particular software. Whenever software is
trying to execute, the hooking device informs the client about the pending execution,
which in turn asks the user for confirmation before actually running the software
requesting to execute. The API hooking is used to capture the execution call that goes
to the Windows kernel when the operating system tries to allocate memory for the
program. We used Anton Bassov’s Soviet Protector code when implementing the API
hooking functionality, with slight modifications added [16]. It consists of a system
driver that replaces the API call to NtCreateSection() with its own version, and
a software component that communicates with the driver through a shared section of
the memory2.

The client uses different lists to keep track of which software have been marked as
safe (the white list) and which have been marked as unsafe (the black list). These two
lists are then used for automatically allowing or denying software to run, without
asking for the user’s permission every time, and thereby reducing the need for user
interaction. When the driver discovers an execution and informs the client about it,
the client traverses the white list and blacklist for an occurrence of the pending
software based on a checksum calculated from the EXE-file content, using an
algorithm such as for instance SHA-1. If the software is found in either of the two
lists, the appropriate response is automatically sent to the driver without the need for
user interaction, otherwise the client queries the server and fetches the information
about the executing software to show the user and take action based on the user’s
decision.

2 It might at first seem more reasonable to focus on API calls such as NtCreateProcess()

[16].

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 149

The proof-of-concept tool also allows the user to submit ratings and comments, as
described in the previous sections, as well as to view compiled information from other
users and run statistics about the software about to execute. The user is only asked to
rate software which he has executed more than a predefined number of times,
currently 50 times. This ensures that the user has been using the software for some
time and therefore has developed some sort of opinion about it. To minimize the user
interruption there is also a threshold on the number of software the user is asked to
rate each week, currently two ratings per week. So, when the user has executed a
specific software 50 times she will be asked to rate it the next time it is started, unless
two software already has been rated that week.

3.2 Server Design

In addition to the processing of software ratings the server also handles the database
containing registered user information, ratings and comments for different software
that users have previously voted on. The clients communicates with the server
through a web-server that handles the requests sent by the client software, as well as
displaying web pages for showing more detailed information about the software and
comments in the database. XML is used as the communication protocol between the
client and the server.

The only data stored in the database about the user is a username, hashed password
and a hashed e-mail address, as well as timestamps of when the user signed up, and
was last logged in. The e-mail address is only there to make it more difficult for a
person to create several different accounts, as it is possible to sign up only once per e-
mail address. Each e-mail address used to sign up must be valid, since it is used for
the confirmation and activation of the newly created account.

From this data it is not possible for us, or anyone else getting in hold of the
database, to identify a specific user, as long as the username (over the contents of
which we have little control) does not reveal too much detailed information. And as
our implementation does not store any IP addresses associated with the users, it is also
impossible to determine which hosts are running which software, and from there try
to launch an attack against a specific host. What can be traced however, is every
user’s submitted rating, comment and answers for each software he or she has ever
rated, as well as each user’s submitted remark (positive for a good, clear and useful
comment or negative for a coloured, non-sense or meaningless comment) for every
comment he or she has ever rated. But as mentioned previously, it is impossible to
directly or indirectly associate this data with a particular host, but only to a username,
hashed password, hashed e-mail address and two timestamps, which does not put the
user at any actual risk from using this software.

Software ratings are calculated at fixed points in time (currently once in every 24-
hour period). During this work users’ trust factors are taken into consideration when
calculating the final score for a particular software. In addition to these software
ratings the proof-of-concept tool also calculates specific software vendor ratings. This
is done by simply calculating the average score of all software belonging to the
particular vendor.

As a protection mechanism, the reputation system has implemented a growth
limitation on users’ trust factors, by setting the maximum growth per week to 5 units.

150 M. Boldt et al.

Hence, you can reach a maximum trust factor of 5 the first week you are a member,
10 the second week, and so on. Thereby preventing any user from gaining a high trust
factor and a high influence without proving themselves worthy of it over a relatively
long period of time. The second limitation of the trust factor is a minimum level of 1
(which is also the rating for new users), and a maximum of 100.

3.3 Database Design

Each software represented in the database will hold a set of information that is linked
directly to the executable file. The most important information is the unique software
ID number which is generated by utilizing a hash algorithm over the file content.
Since this ID is a calculated out of the file data (its program instructions) it is also
directly connected to the software behaviour. This means that it is impossible to
change the software behaviour without also changing the software ID. In other words,
it is impossible to alter the programs behaviour and still keep the ratings associated
with the software in the database, which is an important property for a software
reputation system. Since the software ID is generated through by a hash algorithm
(e.g. SHA-1) the risk of two different files having identical fingerprints is virtually
non-existent. In addition to user ratings and comments the following information is
stored for each software in the database:

• ID of software executable e.g., a generated SHA-1 digest.

• File name of the software executable.

• File size of the software executable.

• Company name of the software company that produced the software executable.

• Software version number.

Information about both the company name and file version is dependant on the
software developer to put these values into the program file, which unfortunately is
not always true. The rest of the data is meta-data that always can be retrieved once the
complete file is in ones possession.

Since hash functions are used, the software ID will be different even between files
with small modifications, in effect, two different versions of the same program will
end up having different fingerprints. This also means they will be considered as
separate software executables by the reputation system server, and as such their votes
and ratings will be separated from each other. Although a drawback with this
approach is that there will be many different database entries for slightly different
versions of the same program, this may in fact be beneficial to the user. For example,
one version of an application may be well known to cause degraded performance,
display banners, and so on, while in the next version, the developers have fixed the
performance issues and decided to use other means to finance their work, and thus the
contents of the reputation system will correctly present this to the user.

However, questionable software vendors that want to try to circumvent the
reputation system could try to make each instance of their software applications differ
slightly between each other so that each one has its own distinct hash value. The
countermeasure against such behaviour would be to instead map all ratings to the
software vendor instead of mapping it to a specific software version from that vendor.

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 151

To fight that countermeasure some vendors might try to remove their company name
from the binary files. If this should happen it could be used as a signal for PIS since
legitimate software vendors label their products with their company information [6].

Furthermore, it would be possible for the system to provide users with valuable
information about the vendor of a specific software by calculating the mean value
over all software ratings the company in question has received. Giving the user an
indication of how well the software developed by this company has previously fared
in the reputation system. That way, the user may choose to base his decision on
ratings and comments given not only on the current software executable, but also on
the derived total rating of the software developing company.

4 Discussion

In this section we will discuss what impact the introduction of a software reputation
system would have on privacy-invasive software. We will also bring up some issues
with the proof-of-concept implementation together with improvement suggestions. In
the end we make a comparison between existing countermeasures against PIS and the
software reputation system.

4.1 System Impact

Offering users mechanisms that enhance informed decisions regarding software
installation increase the liability of the user. In a way, these mechanisms transfer
some of the responsibility concerned with the protection against PIS to the users
themselves. We believe this is a necessary consequence for new protection
mechanisms that respect users’ own personal needs and preferences. As users are
being confronted with descriptions about behaviours and consequences for PIS, they
are also assumed to assimilate and use this information in a mature and reasonable
way. Based on the reputation system, it would be up to the users themselves to decide
on whether or not to allow certain software to enter their system.

Table 2. Difference between legitimate software and malware with respect to user’s informed
consent and negative user consequences

 Tolerable
Negative
Consequences

Moderate
Negative
Consequences

Severe
Negative
Consequences

High

Consent

1)
Legitimate
software

2)
Adverse
software

3)
Double
agents

Low

Consent

7)
Covert
software

8)
Trojans

9)

Parasites

152 M. Boldt et al.

Computer users today face similar difficulties when evaluating software as
consumers did a hundred years ago when evaluating food products. In the nineteenth
century food industry, distribution of snake-oil product flourished [35]. These
products claimed to do one thing, for example to grow hair, while they instead made
unwitting consumer addicted to habit-forming substances like cocaine and alcohol. In
1906 the Pure Food and Drug Act was passed by the United States Congress, allowing
any manufacturer not complying with the rules to be punished according to the law
[20]. As a consequence the manufacturers followed these rules, allowing consumers
to trust the information on the food container to be correct. Further allowing them to
make informed decisions on whether they should consume a product or not, based on
individual preferences such as nutritiousness, degree of fat or sugar, price, or
allergies. As long as the food does not include poisonous substances or use deceptive
descriptions it is up to the consumer to make the final decision. Although the
distribution of physical snake-oil products was mitigated in 1906, its digital
counterpart continues to thrive under the buoyant concept of spyware. An important
distinction between food products and software is that the former one relies on
physical factories and companies with employed personnel, which software does not.
It is possible for anyone with the programming skills to produce software which then
is spread globally over the Internet. Since users do not always have the option to
relate the software to a physical manufacturer we believe it is important for them to
instead be able to use other users’ previous knowledge about the product in question,
offered to them by a software reputation system.

It should be noted that a reputation system against PIS tightly affect the
PIS classification in Table 1. The introduction of this type of user-oriented
countermeasure would transform the classification of PIS as shown in Table 2. As
computer users are given a tool to make informed decisions regarding the behaviour
and implications of software, it is possible to apply a sharp boundary based on user
consent between all software in the PIS classification. Using the added knowledge
provided by the reputation system would render in that all PIS that previously have
suffered from a medium user consent level, now instead would be transformed into
either a high consent level (i.e. legitimate software) or a low consent level (i.e.
malware). In other words, all software with medium user consent, i.e. spyware, is
transformed into either legitimate software or malware in the classification. Since
anti-malware tools handle all malicious and deceitful software, the information about
the rest of the software could be trusted to be correct, i.e. any software using deceitful
methods is regarded as malware and are treated as such. This allows users to rely on
the information when reaching trust decisions regarding software installation on their
system. Another aspect of this type of countermeasure is that no single organization,
company or individual is responsible for the software ratings, since these are
calculated based on all votes submitted by the users. Making it hard for dissatisfied
spyware vendors to sue the reputation system owners for defamation.

4.2 Improvement Suggestions

One issue that we soon discovered during tests of the proof-of-concept tool was the
question of system stability. As we give the users the ability to deny the execution of
important system components, we also handed them the ability to crash the entire

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 153

system in a single mouse click. This further enhances the need for a white list system
to ensure proper operating system functionality in order to avoid inadvertently
bringing the operating system down when running the software client. However,
given that the user has the free choice to block any program, there is no way to
guarantee that the operating system will not be crashed, especially at an initial phase
where the user is learning how to use the software client.

The proposed solution to this problem would be an enhanced white listing system
that could examine the file about to execute, to determine if it has been digitally
signed by a trusted vendor e.g., Microsoft or Adobe. In case the certificate is present
and valid, the file is automatically allowed to proceed with the execution. It would
also be possible to implement a signature handling interface in the reputation system
client that allows the user to white list and blacklist different companies through their
digital signatures, which – in turn – could considerably lower the need for user
interaction. In that regard the proposed functionality would be somewhat similar to
the capabilities of Microsoft’s Restricted Software Policies [23].

The introduction of an enhanced white listing system with signature verification
capabilities would provide an important building block for a software policy manager.
By using the information available in the reputation system it would be possible for
corporations or individual users to set up policies for what software is allowed to
execute on their computers. Such policies could for instance take into account
whether the software has been signed by a trusted vendor, the software and vendor
rating, or any specific behaviour reported for the software e.g., if it show pop-up
advertisements or include an incomplete removal routine. This would allow system
owners to define policies for what software is allowed to install and run on their
computers e.g., by specifying that any software from trusted vendors should be
allowed, while other software only is allowed if it has a rating over 7.5/10 and does
not show any advertisements. A solution like this implies that the reputation system
also includes a preference module that holds the users’ software preferences that
should be enforced.

Another improvement suggestion involves allowing for instance organisations or
groups of technically skilled individuals to publish their software ratings and other
feedback within the reputation system. This information is then available for any
other users of the reputation system. Allowing computer users to subscribe to
information from organisations or groups that they find trustworthy, i.e. not having to
worry about unskilled users that might negatively influence the information. The
subscribed information could of course also be used in parallel with the other software
feedback which is based on all reputation system members’ votes.

4.3 Comparison with Existing Countermeasures

One major difference between traditional anti-spyware software and the reputation
system based solution we propose is that in the latter we are able to gather more
complete and useful information regarding the behaviour of software. Instead of a
black and white world where an executable is branded as either a virus or not, we are
able to touch the previously mentioned grey zone in between. We gather and present
information about software that is important and useful to the users, and hard to find.

154 M. Boldt et al.

For instance, although an application may not be classified as a virus or spyware,
users may think twice about running it if they are informed that it displays pop-up
ads, registers itself as a start-up program and does not provide a functioning uninstall
option. This kind of discouraging information will not be provided by the vendor of
the application and can only be received from users who have experienced it first-
hand and are willing to share their experiences to help others.

Currently available countermeasures against PIS, such as anti-spyware and anti-
virus applications, have the benefit of specialized, up to date and reliable information
databases that are updated on a regular basis. The drawback is a vendor database that
must be updated locally on the client, as well as traversed whenever a file is analysed.
Furthermore, the organization behind the countermeasure must investigate every
software before being able to offer a protection against it. The relevance and
reliability of the information provided by the anti-spyware and anti-virus software
may be more reliable than that of users of a reputation system. However, the
reputation system is able to cover more details that may be useful to the user, such as
if the software displays ads, alter system settings, and so on, and with a sufficiently
large user base, the sheer amount of data gathered helps compensate for the afore
mentioned reliability issue. Also, by using a more flexible classification, where the
user is provided the information about the software and is allowed to make an
informed decision about allowing it to run or not, one is able to avoid the high
contrast environment of anti-virus software and similar, where an executable is either
strictly malicious or it is totally safe.

Different protection systems (e.g., anti-virus or anti-spyware tools) are built on
different approaches, and the technology as well as pricing varies. In truth, it would
be foolish to believe that either one approach would be a perfect solution to the
problem at hand, and the view of the problem itself may differ. However, when
looking at the development of the computer world, the Internet, and the on-going
arms race in virus and spyware development, it is obvious that more than just one
kind of protection is needed, and that there is no silver bullet. At the same time, we
firmly believe that a specialized reputation system such as the one we propose would
be a useful way to be able to penetrate the gray zone of half-legitimate software and
to better inform users of what to expect from the software they are about to execute. It
can be seen as trying to share and transfer knowledge between users, improving their
level of expertise, instead of creating an expert system that handles all the decisions
for the users, being ultimately responsible for the failure when the protection fails.

5 Conclusions and Future Work

This paper explores how to construct a specialized reputation system to be used for
blocking privacy-invasive software. The fundamental idea is that computer users
could be strong together if they collaborate to mitigate the effects from privacy-
invasive software. The co-operation is based on that each users rate the software that
they use most frequently. These aggregated ratings from the users are then
transformed into software reputations that are available for all participants in the
system upon installation of new software. Various methods to address incorrect

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 155

information in the system, be it intentional or unintentional, are proposed without
deteriorating users’ privacy.

To further explore the possibilities, we designed and implemented a client and
server-based proof-of-concept tool, which currently include well over 2000 rated
software programs. Each time a user is about to execute a program, the client pauses
the execution, downloads information and rating about the particular software from
the server, and asks the user whether he or she would like to allow or deny the
software to run. We further propose how this system could be enhanced by adding
functionality that allows users to produce software policies that are automatically
enforced by the client program. Such policies could take into account whether the
software in question has received a rating above a certain value, if it is digitally
signed by a trusted vendor, or if it is free from a set of predefined unwanted
behaviours.

As future work we will investigate how and to what extent this proof-of-concept
tool affects computer users’ decisions when installing software. In addition to this we
will also examine the possibility of using runtime software analysis to automatically
collect information about whether software has some unwanted behaviour, for
instance if it shows advertisements or includes an incomplete uninstallation function
[24]. The results from such investigations could then be inserted into the reputation
system as hard evidence on the behaviour for that specific software. Furthermore, it
would be interesting to investigate the use of alternative, and more reliable, security
tokens than e-mail addresses when creating new accounts. Maybe also relying on the
IP address and computational penalties through variable hash guessing [3]. Finally, it
would be interesting to investigate how pseudonyms could be used as a way to protect
user privacy and anonymity, e.g. through the use of idemix [17].

References

[1] Ames, W.: Understanding spyware: risk and response. IEEE IT Professional 6(5) (2004)

[2] Arnett, K.P.: Busting the Ghost in the Machine. Communications of the ACM 48(8)
(2005)

[3] Aura, T.: DOS-Resistant Authentication with Client Puzzles. LNCS, vol. 2133. Springer,
Heidelberg (2000)

[4] Boldt, M.: Privacy-Invasive Software - Exploring Effects and Countermeasures,
Licentiate Thesis Series No. 2007:01, School of Engineering, Blekinge Institute of
Technology, Sweden (2007)

[5] Boldt, M., Carlsson, B.: Privacy-Invasive Software and Preventive Mechanisms. In: The
proceedings of the IEEE International Conference on Systems and Networks
Communications (ICSNC06), Papeete Tahiti, IEEE Computer Society Press, Los
Alamitos (2006)

[6] Boldt, M., Carlsson, B., Martinsson, R.: Software Vulnerability Assessment - Version
Extraction and Verification. In: The proceedings of the Second International Conference
on Software Engineering Advances (ICSEA’07), Cap Esterel France (2007)

[7] Bruce, J.: Defining Rules for Acceptable Adware. In: The Proceedings of the 15th Virus
Bulletin Conference. Dublin Ireland (2005)

156 M. Boldt et al.

[8] Christodorescu, M., Jha, S.: Testing Malware Detectors. In: The proceedings of the ACM
International Symposium on Software Testing and Analysis (2004)

[9] Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair
Ratings and Discriminatory Behaviour. In: The proceedings of the 2nd ACM Conference
on Electronic Commerce (2000)

[10] Douceur, J.: The Sybil Attack. In: The proceedings for the 1st International Workshop on
Peer-to-Peer Systems (2002)

[11] Fischer-Hübner, S.: IT-Security and Privacy: Design and Use of Privacy-Enhancing
Security Mechanisms. Springer, Heidelberg (2001)

[12] Flixster (September 13, 2006), http://www.flixster.com
[13] Good, N., et al.: Stopping Spyware at the Gate: A User Study of Privacy, Notice and

Spyware. In: The proceedings of the Symposium on Usable Privacy and Security,
Pittsburgh, USA (2005)

[14] Good, N., et al.: User Choices and Regret: Understanding Users’ Decision Process about
Consentually Acquired Spyware. I/S: A Journal of Law and Policy for the Information
Society 2(2) (2006)

[15] Greenfield, A.: Everyware - The Dawning Age of Ubiquitous Computing. New Riders,
Berkeley CA (2006)

[16] Hooking the native API and controlling process creation on a system-wide basis
(November 23, 2006), http://www.codeproject.com/system/soviet_protector.asp

[17] Idemix: pseudonymity for e-transactions (June 28, 2006),
 http://www.zurich.ibm.com/security/idemix/

[18] Internet Movie Database (February 23, 2007), http://www.imdb.com
[19] Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-Based Spyware

Detection. In: The proceedings of the 15th USENIX Security Symposium (2006)
[20] Landmark Document in American History, Pure Food and Drug Act of 1906 (October

16, 2006), http://coursesa.matrix.msu.edu/~hst203/documents/pure.html
[21] Larsson, T., Lindén, N.: Blocking Privacy-Invasive Software Using a Specialized

Reputation System, Masters Thesis No. 2006:14, School of Engineering, Blekinge
Institute of Technology, Sweden (2006)

[22] LavaSoft Ad-Aware (September 19, 2006),
 http://www.lavasoftusa.com/software/adaware

[23] Microsoft Technet, Using Software Restriction Policies to Protect Against Unauthorized
Software (May 13, 2007)

[24] Moshchuk, T., Bragin, S.D., Gribble, H.M.: A Crawler-based Study of Spyware on the
Web. In: The proceedings of the Network and Distributed System Security Symposium
Conference Proceedings, Virginia USA (2006)

[25] Norton Internet Security (September 19, 2006),
 http://www.symantec.se/region/se/product/nis index.html

[26] Pricerunner (September 19, 2006) http://www.pricerunner.com
[27] Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation Systems.

Communications of the ACM 42(12) (2000)
[28] Rosenberg, R.S.: The Social Impact of Computers, 3rd edn., San Diego CA. Elsevier

Academic Press, Amsterdam (2004)
[29] See you later - anti-Gators, CNET News.com (September 19, 2006),

 http://news.com.com/2100-1032 3-5095051.html
[30] Schultz, K.: Sticking It to Spyware. InfoWorld 27(38) (2005)

 Preventing Privacy-Invasive Software Using Collaborative Reputation Systems 157

[31] Sipior, J.C.: A United States Perspective on the Ethical and Legal Issues of Spyware. In:
Proceedings of 7th International Conference on Electronic Commerce, Xi’an China
(2005)

[32] Spyaudit (September 12, 2006), http://www.earthlink.net/spyaudit/press/

[33] Spybot -Search & Destroy (September 19, 2006), http://www.safer networking.org

[34] “Spyware”: Research, Testing, Legislation, and Suits (March 01 2006)

 http://www.benedelman.org/spyware/

[35] Technology Review, The Pure Software Act of 2006 (October 16, 2006),

 http://www.simson.net/clips/2004/2004.TR.04.PureSoftware.pdf

[36] Tor: anonymity online (February 24, 2007), http://tor.eff.org

[37] Webroot Software, —.: Internet Spyware and statistics about infection rate (September
12, 2006), http://www.webroot.com/resources/stateofspyware/excerpt.html

[38] Zacharia, G., Moukas, A., Maes, P.: Collaborative Reputation Mechanisms in Electronic
Marketplaces. In: the proceedings of the 32nd Hawaii International Conference on
System Sciences (1999)

Towards Improved Privacy Policy Coverage in

Healthcare Using Policy Refinement

Rafae Bhatti and Tyrone Grandison

IBM Almaden Research Center,
650 Harry Road, San Jose, California 95120, USA

{rbhatti,tyroneg}@us.ibm.com

Abstract. It is now mandatory for healthcare organizations to specify
and publish their privacy policies. This has made privacy management
initiatives in the healthcare sector increasingly important. However, sev-
eral recent reports in the public media and the research community about
healthcare privacy [1,2] indicate that the use of privacy policies is not
necessarily a strong indication of adequate privacy protection for the
patient. These observations highlight the fact that the current state of
privacy management in healthcare organizations needs improvement. In
this paper, we present PRIMA, a PRIvacy Management Architecture,
as a first step in addressing this concern. The fundamental idea behind
PRIMA is to exploit policy refinement techniques to gradually and seam-
lessly embed privacy controls into the clinical workflow based on the ac-
tual practices of the organization in order to improve the coverage of
the privacy policy. PRIMA effectively enables the transition from the
current state of perceived to be privacy-preserving systems to actually
privacy-preserving systems.

Keywords: Privacy Management, Healthcare, HIPAA, Compliance,
Refinement.

1 Introduction

Privacy management is one of the main inhibitors of the deployment, adoption
and use of electronic records systems in the healthcare industry. There are several
privacy laws and regulations that have emerged around the world in the past
few years [3], such as the Personal Data Protection Law [4] in Japan, the Health
Insurance Portability and Accountability Act (HIPAA) in the United States [5]
and the Personal Information Protection and Electronic Documents Act [6] in
Canada. For American healthcare, HIPAA is normally assumed to provide the
baseline for privacy compliance for healthcare entities.

While HIPAA and other healthcare-related privacy laws and regulations make
it mandatory for organizations to specify and publish privacy policies regarding
the use and disclosure of personal health information, recent media and aca-
demic reports about healthcare privacy [1,2] indicate that there is not necessar-
ily a strong correlation between the use of privacy policies and adequate patient
privacy protection. In [2], the authors examined the actual access patterns for a
Norwegian healthcare organization. Their study indicates that in spite of possess-
ing strict policy and regulation, the security mechanisms of the IT system were

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 158–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Improved Privacy Policy Coverage in Healthcare 159

under-utilized and often bypassed in order to deliver care. This phenomenon
creates an over-reliance on exception-based access for any situation that does
not seem to be explicitly covered by the policy, and even for some that are. In
the healthcare environment, disallowing access during service delivery is not an
option because it may lead to grim consequences for the patient.

These observations, which have also been echoed in the United States [1,7],
intimate the existence of a general state of affairs in healthcare organizations,
where circumventing data security and privacy controls is the rule and not the
exception. This trend is alarming because it negates the existence and efficacy
of policy. In this state, the policy does not precisely represent or embody the
actual level of data protection afforded to the patient, i.e. the policy is no longer
a genuine reflection of the organization’s privacy practices. Additionally, it un-
dermines the notion of empowering the patient, as his consent may no longer be
valid because the policy is no longer valid. While these observations may appear
to reflect negatively on the healthcare organizations, these scenarios are in fact
a direct result of applying prior technology without considering the nuances of
the clinical workflow. In light of the recent push to electronic health records [8],
this conundrum will multiply in effect.

It is our belief that it is possible to leverage artifacts from the actual clinical
workflow to inform and construct appropriate privacy protection mechanisms
for patients. We purport that policy refinement, which we will define as the pro-
cess of improving the rules that define the level of protection, can be employed
to gradually and seamlessly embed meaningful privacy controls into the clini-
cal workflow based on the actual practices of the organization. This concept is
the base construct for the PRIMA system, which also leverages data mining [9]
and Hippocratic Database technology [10]. In particular, the architecture builds
upon the Active Enforcement [11] and Compliance Auditing [12] components
of the Hippocratic Database technology, and leverages standard data analysis
techniques. PRIMA’s policy refinement helps mitigate the above stated conun-
drum by (i) improving the design of the policies, which should elevate the level
of privacy protection afforded to the patient, and (ii) better aligning the sys-
tem policies with the actual privacy practices of the organization to improve the
coverage of the privacy policy. To the best of our knowledge, no prior work on
policy refinement for healthcare systems has been undertaken.

The rest of the paper is organized as follows. In section 2, we provide some
background from a regulatory standpoint regarding use and disclosure of per-
sonal health information. Then we analyze the rationale for stated privacy poli-
cies not being actual representations of patient privacy protection. In section
4, we describe the PRIMA architecture and technical details. In section 5, we
illustrate the use of PRIMA in a healthcare scenario. We conclude in section 6.

2 Background

Privacy legislation around the world are based on the notions captured in the
OECD Data Protection Principles [3]. For the purposes of exemplification, and
without loss of generality, we ground our discussion on privacy protection in the
healthcare sector by examining the Limited Use and Disclosure provision
of the HIPAA Privacy Rule. The motivation and arguments for this provision

160 R. Bhatti and T. Grandison

can be extrapolated to the other similar legislation, regulations and laws around
the world.

With respect to the HIPAA Privacy Rule, covered entities refer to health
plans, healthcare providers and healthcare clearinghouses, and Protected Health
Information (PHI) refers to all individually identifiable health information held
or transmitted by a covered entity or its business associate, electronically, on
paper, or orally. The limited use and disclosure provision requires that covered
entities must use or disclose the minimum necessary PHI for a specific pur-
pose and ensure the development and implementation of policies and procedures
governing access and use.

In accordance with the purpose specification provision in privacy regulations,
a privacy policy statement normally contains specific purposes for which data
can be used or disclosed. However, the defined purposes tend to be very broad in
scope [2]. For example, many real-world policies mention collecting information
for the purpose of “administering healthcare”. This granularity is coarse enough
to subsume many information uses and disclosures. We recognize that this prac-
tice may not be performed with mal-intent, but may be a function of reducing
the complexity of policy specification, which reduces the size of the rule base.

It was also observed [2] that organizations had difficulty defining specific em-
ployee categories (i.e. useful roles), which define the authorizations for viewing
specific patient data categories [13]. Typically, the collected information is avail-
able to all “members of medical staff”, which effectively results in an umbrella
authorization. Again, we recognize that the transition from the generalist school
of medicine to the specialist school of medicine over the last few decades has
meant that the number of healthcare professionals involved in the delivery of
care, to a single patient, has increased significantly and that categorizations may
be hard because roles are so fluid and cannot be assumed to be mutually exclu-
sive. Additionally, the primary purveyors of healthcare tends to be the nursing
staff and it is understandable that authorization difficulties may exist. However,
there are still clearly defined lines, at least legally, on who should be able to view
and use particular aspects of patient data. Thus, role delineation and catego-
rization is necessary and critical. For a few years now, the broader community
has realized and advocated the need for fine-grained access control. This view is
shared by both academic researchers [14,15,16] and medical professionals [17,13].

From the previous discussions, it is clear that, despite the underlying reasons,
the limited use and disclosure provision in the HIPAA Privacy Rule has not
been interpreted and implemented very well in existing healthcare informatics
systems. Our view is that healthcare is an industry that will always require
customized mechanisms to balance privacy and operational considerations.

In order to not be disruptive and to automate this process of customization,
PRIMA attempts to gradually embed policy controls in the system by analyzing
the information already existing in the system and informing the new state that
the system needs to evolve to. Thus, the overall goal is to bridge the disparity
between intended and achieved levels of privacy protection.

3 Formal Model

For an arbitrary healthcare organization, HO, the policy that they define for
their IT systems embodies the regulations, legislation, laws and organizational

Towards Improved Privacy Policy Coverage in Healthcare 161

Fig. 1. A Sample Privacy Policy Vocabulary

mandates that they must follow. This represents what they would ideally like to
happen, i.e. their ideal workflow WIdeal.

The studies presented earlier state that after a period of operation, the audit
trails of system accesses, which represents HO’s real workflow WReal, is primarily
filled with exception-based access statements.

3.1 Core Constructs

Let’s formalize the underlying notions and the goal of the PRIMA system, which
is the reduction of the gap between real and ideal workflows. We assume that
the HO has chosen a privacy specification notation and has a mapping from the
terms used in this notation to the artifacts that the IT system will manipulate.
Hereafter, we refer to these artifacts as the privacy policy vocabulary (or vo-
cabulary, for short). The formal representation of the policies relies on the key
concepts that make up a policy, namely RuleT erm and Rule.

Definition 1. (RuleTerm): A RuleT erm (RT) is a tuple with two literal-valued
elements, attr and value. It is written as RT = (attr, value). The two elements
of RT are accessed as RT.attr and RT.value. ��

A RuleT erm models the assignment of an attribute in a policy rule. For exam-
ple, demographic data is represented as (data, demographic) and telemarketing
purposes as (purpose, telemarketing). RuleT erm is the fundamental construct
for our formalism in order to ensure that the model is applicable to any arbitrary
specification notation.

Definition 2. (RuleTerm Types): A RuleTerm,RT, is considered ground (writ-
ten as RT) iff its attribute value (RT.value) is an atomic-valued literal, with re-
spect to the privacy policy vocabulary used. Otherwise, it is composite (written
as RT). ��

Let’s define RT1 = (data, demographic), RT2 = (data, address), and RT3 =
(data, gender). The particular policy vocabulary used here is depicted in Fig-
ure 11. In this example, RT3 can be considered a ground RuleT erm since it
1 Only the RT.value element of each RT is shown in the figures for conciseness.

162 R. Bhatti and T. Grandison

contains the attribute value “gender”, which cannot be further divided into mul-
tiple RuleT erms according to the chosen vocabulary. On the other hand, RT1 is
unequivocally a composite RuleT erm since demographic information could be
further divided into information about address and gender. In fact, both RT2

and RT3 are subsumed by RT1.
For each composite RuleTerm RT , we assume the existence of a special set,

written as RT ′, that contains all the ground rule terms RT1, . . . , RTn that can
be derived from RT using the chosen privacy policy vocabulary. In the example
shown in Figure 1, the set RT ′

1 for RT 1 is shown to comprise of four ground
RuleTerms.

Definition 3. (Existence of Ground RuleTerm): Given a composite RuleTerm
RT and a privacy policy vocabulary, it can always be transformed to a correspond-
ing ground RuleTerm RT . Formally, (∀x : RT (x ∈ RT)) → (∃y : RT (y ∈ x′).2

An important notable notion is that of the equivalence of RuleT erms. Given a
privacy policy vocabulary or set of vocabularies, the equivalence notion allows
for the comparison of RuleT erms.

Definition 4. (Equivalence of RuleTerms): Two RuleT erms, RTi and RTj, are
considered equivalent, written RTi ≈ RTj, iff ∃x, y : RT (x ∈ RTi) ∧ (y ∈ RTj)
∧ (x.attr = y.attr) ∧ (x.value = y.value)). ��
In the example in Definition 1, both RT2 and RT3 are equivalent to RT1 because
there exists ground RuleT erms RT2 and RT3 belonging to the set RT ′

1.

Definition 5. (Rule): A Rule, Ri, is a conjunction of RuleT erms. It is written
as Ri = {RT1 ∧ . . . ∧ RTn}, n ≥ 1. The number of RuleT erms of a Rule, n, is
referred to as the cardinality of the Rule, written as #R. ��
A Rule models a specific combination of attribute assignments, which repre-
sents individual statements in a policy. For example, “nurses are authorized to
see insurance information for billing purposes”may be represented as {(data,
insurance) ∧ (purpose, billing) ∧ (authorized, nurse)}.

A Rule, Ri, is said to be a ground rule (written as Ri) if all RuleT erms in
Ri are ground. Ri is a composite rule (written as Ri) if there exists at least
one RuleT erm that is a composite RuleT erm.

Corollary 1. (Existence of Ground Rule): From Definition 3, it follows that for
any Rule Ri, there always exists a corresponding Rule Ri.

Definition 6. (Equivalence of Rules): Two Rules, R1 and R2, are said to be
equivalent, written as R1 ≈ R2, iff (#R1 = #R2) ∧ (∀x : RT (x ∈ R1) → (∃
y : RT (y ∈ R2) ∧ (x ≈ y)). ��
Essentially, rules are equivalent when they have the same number of terms and
every term in one rule is equivalent to another in the other rule.

Definition 7. (Policy): A policy, Px, is a collection of rules that is symbolically
tied to a data store x, where x can be either the policy store, PS, or the audit
logs, AL. A policy is written as Px = R1

x, . . . , Rm
x , m ≥ 1. The number of Rules

in the Px, m, is referred to as the cardinality of Px, which is written as #Px. ��
2 Note that x′ is a set.

Towards Improved Privacy Policy Coverage in Healthcare 163

For our purposes, we equate WIdeal to PPS and WReal to PAL. This is a simplifi-
cation that holds true because the artifacts under investigation are the workflows
relating to healthcare data disclosure and use.

Given that RuleT erms and Rules can be either ground or composite, a Policy
can be too. A Policy, Px, is a ground policy (written Px) if all Rules are ground
Rules. If there is at least one composite Rule in Px, then it is a composite policy
(written Px).

For each composite policy Px, we assume the existence of a special set, written
as Px

′, that contains all the ground rules that can be derived from the composite
rules in Px using the chosen privacy policy vocabulary. The existence of this set
follows from Definitions 3, 5, and 7.

Corollary 2. (Existence of Ground Policy): From Corollary 1, it follows that
for any Policy Px, there always exists a corresponding Policy Px.

3.2 Policy Coverage

The concept of policy coverage builds upon the idea of comparing the real state
of the system PAL, as represented by the audit logs, with the ideal state of the
system PPS , as represented by the policy store that contains the rules specified
by some system administrator, privacy officer, etc. We recognize that the PPS

will normally be specified at a high level of abstraction (and later mapped to low-
level control statements), and that PAL will be low-level information gathered
by the system in its normal operation. Thus, in order to perform a meaningful
comparison, we must transform both to the lowest common denomination, i.e
ground policies, and then do our evaluation.

Definition 8. (Range): Given a policy Px, its range, RangePx, is the set con-
taining all the rules in Px

′. ��
The cardinality of the Range is the number of elements in the set RangePx ,
written #RangePx . Given this definition, we can now define policy coverage.

Definition 9. (Coverage): Given two policies Px and Py, and a privacy policy
vocabulary V , the coverage of Px in relation to Py, written CoveragePx

Py
, is given

by #(RangePx ∩ RangePy) ÷ #RangePy . ��
Here, the intersection is computed using the equivalence of rules as defined in
Definition 6. Informally, the policy coverage in a given system is defined as the
amount of overlap between the real and ideal representations of the system state,
namely PPS and PAL. The coverage of Px with respect to Py is computed as a
ratio using the algorithm ComputeCoverage given below.

The overall goal of the PRIMA system is to move towards a state of complete
coverage, which is defined below. It is acknowledged that complete coverage
may not be attainable given the human component, but higher levels of coverage
should be a realistic goal. The process of improving the policy coverage is visually
shown in Figure 2.

Definition 10. (Complete Coverage): Given two policies Px and Py, and a
privacy policy vocabulary V , Px completely covers Py iff RangePx ∩ RangePy =
RangePy . ��

164 R. Bhatti and T. Grandison

Fig. 2. Simplified Visual Representation of Policy Coverage

Algorithm 1. ComputeCoverage(Px, Py, V)
Require: ∃getCardinality(S) (returns the cardinality of a set S)
Require: ∃getRange(P,V) (returns the range of the policy P according to the policy

vocabulary V)

1: coverage ← 0
2: rangex[] ← getRange(Px, V)
3: rangey[] ← getRange(Py, V)
4: my ← getCardinality(rangey)
5: overlap[] ← rangex ∩ rangey

6: mo ← getCardinality(overlap)
7: coverage = mo ÷ my

8: return coverage

3.3 Illustrative Example

Let’s look at a simple example that demonstrates coverage calculation. Consider
the policy store shown in Figure 3(a). Let the policy tied to this policy store be
denoted as PPS . The top table shows the abstract-level composite policy, PPS ,
which comprises of three rules. The bottom table shows a portion of the ground
policy, P ′

PS .
Now consider the audit logs shown in Figure 3(b). Let the policy tied to the

audit logs be denoted as PAL. By default, this policy is a ground policy, PAL, and
it comprises of six rules. We observe that rules 1, 2, and 5 in PAL are matched
by rules 1a, 1b, and 3a, respectively, in P ′

PS , but rules 3, 4, and 6 in PAL are not
matched by any rules in P ′

PS . This indicates that exception-based accesses were
utilized to access the data in a situation which not was allowed by the policy.
These exception scenarios are pointed out in the figure.

To elaborate, the reason for rule 3 not being matched is that a nurse needed
to access referral data for registration purpose, but the policy allows the use of
such data only for treatment purpose. The reason for rule 4 not being matched
is that a nurse needed to access psychiatry data for treatment purpose, but the
policy allows such data to be accessed only by a physician. Lastly, the reason for
rule 6 not being matched is that a clerk needed to access prescription data for
billing purpose, but the policy allows the use of only demographic data for this

Towards Improved Privacy Policy Coverage in Healthcare 165

(a)Policy tied to policy store

(b)Policy tied to audit logs

Fig. 3. Example scenario illustrating coverage computation

purpose. These scenarios indicate the customary practices during the clinical
workflow which should be incorporated in the privacy policy of the system.

Invoking Compute Coverage(PPS ,PAL,V) on this system, the policy coverage
of PPS with respect to PAL in this system is found to be 50 %, i.e. #(RangePPS ∩
RangePAL) ÷ #RangePAL is 3/6.

4 PRIMA: The System

The discussion on policy coverage is useful in formally understanding the goal
of PRIMA. However, a significant consideration, from the clinical standpoint, is
the design of the PRIMA system in a way that aligns with, and not impedes,
the clinical workflow. PRIMA attempts to improve policy coverage by gradually
embedding new policy statements, which were discovered through the process of
policy refinement, into the clinical system.

166 R. Bhatti and T. Grandison

Fig. 4. The PRIvacy Management Architecture (PRIMA)

Figure 4 provides a high-level view of PRIMA. Stakeholders define the privacy
policies for the HO, which is embedded in privacy controls that are integrated
into the clinical environment. One of these privacy controls is an auditing func-
tion that automatically generates entries for the system’s audit logs. These logs
are either periodically replicated or PRIMA-enabled, by the construction of a
consistent consolidated view of them. In the simplest case, there is just one log.
We will discuss desired features of audit controls in section 4.2. At regular in-
tervals or at the request of the stakeholders, the Policy Refinement component
extracts input from the Audit Management component and the Privacy Policy
Definition component and outputs a list of definitions, if any exist, that should
be included in the policy definitions. Let’s discuss each of these components in
more depth.

4.1 Privacy Policy Definition

In this context, we assume that input is gathered by all the stakeholders, i.e.
patients, medical practitioners, payers etc., and a representative uses this infor-
mation to specify the HO ’s policy. At an abstract level, PRIMA may leverage
any arbitrary privacy policy definition tool that has the facility to create privacy
controls that can be embedded into the clinical workflow. As a proof of concept,
the initial instantiation utilizes the HDB Active Enforcement [11] and HDB

Towards Improved Privacy Policy Coverage in Healthcare 167

Fig. 5. Combined Architecture of HDB Active Enforcement (AE) and Compliance
Auditing (CA)

Compliance Auditing [12] components (Figure 5), which produces augmented
database interfaces that both enforce fine-grained policy and patient consent
and create minimal impact, storage and performance efficient logs. Our user
would use the HDB Control Center to enter fine-grained rules, patient consent
information and specify what needs to be auditable.

The HDB components (Figure 5) operate at the middleware layer between
the clinical database and the end user query interface. When the AE component
receives user queries, it rewrites the queries so that only data consistent with
policy and patient preferences is returned. The rewritten request gets sent to the
database for execution and is also stored along with the query issuer, purpose,
time and date in the audit log.

4.2 Audit Management

Retroactive controls, such as audit trails, and the threat of inevitable violation
detection and prosecution are prevalent in healthcare information systems. Un-
fortunately, there are a series of concerns that may stem this approach. The first
concern is the impact on the existing infrastructure, i.e. the degradation in sys-
tem performance and the increased storage demand. The second is the nature of
the technology’s use, i.e. the logs tend to be used only when someone raises a red

168 R. Bhatti and T. Grandison

flag about an improper data disclosure, not as a part of a continuous, proactive
process. Finally, not all the necessary contextual information may have been
logged with the request. The first and third concerns translate into requirements
for auditing systems within the clinical environment.

Use of HDB Compliance Auditing in the clinical workflow allows us to meet
these two requirements. The schema for an audit entry is {(time,tj), (op,Xj),
(user,uj), (data,dj), (purpose,pj), (authorized,aj), (status,sj)}, where tj is the
entry’s timestamp, Xj is either 0 (disallow) or 1 (allow), uj is the entity that
requested access, dj is the data to be accessed, pj is the purpose for which the
data is accessed, aj is the authorization category (e.g. role) of the entity that
requested access, and sj is either 0 (exception-based access) or 1 (regular access).
The status sj of access would in practice be recorded at the time the user either
chooses or manually enters the purpose of access, where former corresponds
to a regular access and latter to an exception-based access. We realize that
this model could be augmented with the inclusion of conditions. However, the
techniques that will be used on the core elements presented are also applicable
to augmentations of the model.

The PRIMA Audit Management component acts as a consolidation for the
audit systems in the clinical environment. In the first instantiation, we use DB2
Information Integrator as the federation technology in the PRIMA Audit Man-
agement component to create a virtual view of all the audit trails. Alternative
methods may be used that can consolidate all audit data in one place for subse-
quent analysis.

Irrespective of the mechanism used to populate the PAL used by PRIMA, we
must be cognizant that the audit logs may contain different kinds of information.
There may be data on attempts to break into the system, i.e. possible violations
or data breaches, or information that represents undocumented, informal clini-
cal practice. We need to differentiate between violations and informal practice
entries in the refinement process.

4.3 Policy Refinement

Refinement is based on the premise that a feedback loop is required between real
and ideal policy; in order to create policy that (i) more accurately represents the
covered entity’s intent and behavior, and (ii) more adequately represents the
level of privacy protection afforded to the patient.

The pseudocode for the refinement process is given in Algorithm 2. The func-
tion is provided (i) the policy store, PPS , (ii) the policies in the logs, PAL, and
(iii) the privacy vocabulary, V , being used by this particular covered entity.
PAL is filtered to remove prohibitions, analysis is performed on the resulting set
to create a set of patterns (if any exist), which are then pruned based on the
coverage of PPS with respect to PAL.

Even though refinement is an ongoing process, we assume that there is a
training period, where a reasonable amount of information is collected in the
audit log. This training period is totally dependent on the particular healthcare
entity deploying the system.

Filter. Algorithm 3 outlines the filter process. Given the schema in subsection
4.2 and the policy under examination, this process removes all rules that are

Towards Improved Privacy Policy Coverage in Healthcare 169

Algorithm 2. Refinement(PPS, PAL, V)
Require: ∃Filter(P) (returns the non-prohibitions in policy P)
Require: ∃extractPatterns(P) (returns the rules that may be undocumented pat-

terns)
Require: ∃Prune(Patterns,PPS, V) (returns the patterns to be incorporated into

the system’s current policy)
1: Practice[] ← Filter(PAL) (see Algorithm 3)
2: Patterns[] ← extractPatterns(Practice, V) (see Algorithm 4)
3: usefulPatterns[] ← Prune(Patterns,PPS , V) (see Algorithm 6)
4: return usefulPatterns

Algorithm 3. Filter(P)
Require: ∃getCardinality(P) (returns the cardinality of P)
Require: ∃getRule(P, i) (returns the ith rule of policy P)
Require: ∃getStatus(R) (returns the value for the status attribute in rule R)
Require: ∃appends(R,Rset) (appends Rule R to the set of rules Rset)
1: Practice ← []
2: n ← getCardinality(P)
3: for i = 1 to n do
4: Ri ← getRule(P, i)
5: if getStatus(Ri) == 0 then
6: append(Ri, P ractice)
7: end if
8: end for
9: return Practice

Algorithm 4. extractPatterns(P, V)
Require: ∃dataAnalysis(P,A, f, c) (Given a policy P , an Audit Schema (or a subset

thereof) A, a frequency f and a condition c, perform data analysis)
1: A ← get attributes from Audit Schema (may also be sent to any subset of Audit

Schema)
2: f ← system-defined threshold frequency (by default set to 5)
3: c ← system defined condition (by default set to COUNT (DISTINCT (User) > 1)
4: Patterns ← []
5: Patterns[] ← dataAnalysis(P, A, f, c)(see Algorithm 5)
6: return Patterns

Algorithm 5. dataAnalysis(P, A, f, c)
Require: ∃executeQuery(SQL) (executes SQL statement and returns results)
1: Split A into (Attr1, .., Attrn)
2: statement ← (SELECT Attr1, .., Attrn FROM P ’s table GROUPBY

Attr1, .., Attrn HAVING COUNT (∗) > f AND c)
3: results[] ← executeQuery(statement)
4: return results

not exception-based access entries. Given a more restrictive or totally different
schema, the problem of separating violations from useful exceptions in an audit
trail may require more sophisticated algorithms and even further research.

170 R. Bhatti and T. Grandison

Algorithm 6. Prune(Patterns, PPS , V)
Require: ∃getCardinality(S) (returns the cardinality of a set S)
Require: ∃getRange(P,V) (returns the range of the policy P according to the policy

vocabulary V)
Require: ∃getComplement(Sx, Sy) (returns the ‘set complement’of Sx and Sy)
1: rangex[] ← getRange(PPS, V)
2: rangey[] ← getRange(Patterns,V)
3: usefulPatterns[] = getComplement(rangex, rangey)
4: return usefulPatterns

Extract Patterns. In this step, the exceptions provided by the Filter phase,
referred to as Practice in Algorithm 3, are analysed using a standard data
analytics technique. The process is outlined in Algorithm 4.

To do the data analytics, a simple routine is called that takes a set of at-
tributes, A, which is (a subset of) our audit schema, a minimum frequency, f ,
and a simple condition, c, translates it into a SQL statement and executes it on
Practice to retrieve a list of entries that have occurred at least f and satisfy con-
dition c (Algorithm 5). The technique finds the exact rules that have occurred
more than f times. The data analysis routine has a well-defined interface that
allows the extractPatterns algorithm to evolve and be easily customizable.

Prune. Not all the patterns produced from the extraction phase may be good
candidates for inclusion into PPS . As a first step in determining these useful pat-
terns, we implement a prune mechanism, Algorithm 6, that removes the patterns
that are already present in PPS . This is where our implementation of prune ends,
because we recognize that some patterns may represent behavior that needs to
be stopped. This implies that human input is prudent at this stage to determine
which patterns are actually good practice and which should be investigated or
terminated.

5 Use Case Scenario

We will now illustrate the use of PRIMA in a realistic healthcare use case sce-
nario. We will refer to the system for which the policies tied to the policy store
and audit logs have already been described in Section 3.3.

We have already defined the basic audit trail schema as {(time,tj), (op,Xj),
(user,uj), (data,dj), (purpose,pj), (authorized,aj), (status,sj)}. Building on the
policy store PPS , audit logs PAL and policy vocabulary V used in Section 3.3,
the audit trail generated by the system is shown in Table 1. Here we assume
that the audit logs have been maintained for a period sufficient to be considered
as the training period for this system and none of the exceptions reported in the
logs are violations.

Invoking ComputeCoverage(PPS , PAL, V) on this snapshot of the audit logs
reveals that the coverage has actually dropped to 30%. This is because the ratio
of matching rules to total rules between PPS , as per Figure 3, and PAL, as
per this snapshot, is now 3/10. In order to improve the coverage, we will run
the Refinement algorithm. At line 1 of this algorithm, the Filter(PAL) function

Towards Improved Privacy Policy Coverage in Healthcare 171

Table 1. Audit trail, PAL, for the system described in Figure 3

Time Op
(1:allow)

User Data
(Category)

Purpose Authorized
(Role)

Status
(0:Exception)

t1 1 John Prescription Treatment Nurse 1
t2 1 Tim Referral Treatment Nurse 1
t3 1 Mark Referral Registration Nurse 0
t4 1 Sarah Psychiatry Treatment Doctor 0
t5 1 Bill Address Billing Clerk 1
t6 1 Jason Prescription Billing Clerk 0
t7 1 Mark Referral Registration Nurse 0
t8 1 Tim Referral Registration Nurse 0
t9 1 Bob Referral Registration Nurse 0
t10 1 Mark Referral Registration Nurse 0

filters out the log entries which are marked as non-exceptions, and therefore the
Practice array now contains only the entries recorded at t3, t4 and t6 − t10.

The next step is to run data analytics to get the patterns that are candi-
date for inclusion in the policy. This is done at line 2 of Algorithm 2, when
extractPatterns(PAL, V) algorithm is called. As first steps in this algorithm,
the relevant variables are set to enable data analysis (A = {data, purpose,
authorized}, f = 5, c =“COUNT (DISTINCT (User)) > 1”). The output of
the dataAnalysis (PAL, A, f, c) routine returns those (data, purpose, authorized)
tuples in PAL that occur at least 5 times. In this instance, the pattern is
Referral : Registration : Nurse, i.e. tuples t3 and t7-t10.

As the last step, in line 3 of the Refinement algorithm, Prune(Patterns, PPS ,
V) is called to obtain the useful patterns from the ones in Patterns. The prune
algorithm works by taking the ranges of both PPS and Patterns and then getting
the ‘set complement’of their intersection. This resulting set effectively contains
those patterns that are not covered by existing rules in the policy store.

Thus, at the end of the Refinement algorithm, Patterns contains Referral :
Registration : Nurse which is recorded in entries at t3 and t7-t10. This reveals
that a Nurse accesses the Referral data for a patient too frequently for Registra-
tion reasons using the exception mechanism. Assuming that this is not a negative
trend, then it suggests that a rule should be included in the policy stating that
Nurses may be allowed to access patient Referral data for Registration purposes.

We are cognizant that the criterion used for pattern extraction, such as the
threshold frequency of rules and numbers of users involved, is clearly subjective
and this scenario only serves to illustrate our approach and is not meant to be a
definitive solution. The PRIMA systems will need to be configured and tuned as
per the requirement specifications of the target environment. Secondly, simple
data analytics techniques may not be sufficient in all cases. In order to enable
a bit more sophisticated inference, we propose to leverage the frequent pattern
mining algorithm [18] in our future work to detect correlations between attribute
pairs that are not discovered by simple SQL queries.

6 Conclusion

In this paper, we formally introduced the problem of policy coverage in health-
care systems, which emerges from the over-reliance on the bypassing of security

172 R. Bhatti and T. Grandison

controls to access sensitive medical information, a phenomenon which is referred
to in the medical community as Break The Glass. Our formalization is supported
by PRIMA, a PRIvacy Management Architecture for healthcare systems, which
addresses this problem of the circumvention of policy. PRIMA utilizes the actual
practices of the organizations (embodied in the audit logs) to perform policy re-
finement. The system’s advantages are that (i) it fits to the clinical workflow
and does not require the workflow to fit to it, i.e. it does not impede the clinical
workflow, (ii) it enables precise (or rather more realistic) definitions of purposes,
criteria for exception-based accesses and categories of authorized users, and (iii)
it enables improved privacy protection for the patient.

While emerging healthcare organizations leverage relational database systems,
legacy systems employ hierarchical, XML-like structures. Thus, the natural evo-
lution for PRIMA is to adapt the core concepts and technology to the tree-based
structures.

References

1. Pear, R.: Warnings over privacy of us health network. New York Times (February
18, 2007)

2. Rostad, L., Edsburg, O.: A study of access control requirements for healthcare sys-
tems based on audit trails from access logs. In: Proc. of the 2006 Annual Computer
Security Applications Conference, Miami Beach, FL, USA (December 2006)

3. Wong, R.: An overview of data protection laws around the world.
http://pages.britishlibrary.net/rwong/dpa.html

4. Ministry of Internal Affairs, Communications Information, and Communications
Policy. Personal data protection law.
http://www.kantei.go.jp/jp/it/privacy/houseika/hourituan/index.html

5. Health insurance portability and accountability act, u.s. department of health and
human services. http://www.hhs.gov/ocr/hipaa/

6. Office of the Privacy Commissioner of Canada. Personal information protection
and electronic documents act.
http://www.privcom.gc.ca/legislation/02 06 01 01 e.asp

7. Break-glass an approach to granting emergency access to healthcare systems.
http://www.nema.org/prod/med/security/upload/
Break-Glass-Emergency Access to Healthcare Systems.pdf

8. United states presidential directive. http://www.himss.org/CPRIToolkit/html/
4.11.html

9. Hand, D.J., Mannila, H., Smyth, P.: Principles of data mining (August 2001)
10. Agrawal, R., Kiernan, J., Shrikant, R., Xu, Y.: Hippocratic databases. In: Proc. of

the 2002 Very Large Data Bases, Hong Kong, China (June 2002)
11. IBM. Ibm hippocratic database active enforcement (version 1.0): User’s guide.

http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/
HDBEnforcementUserGuide.pdf

12. IBM. Ibm hippocratic database compliance auditing (version 1.0): User’s guide.
http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/
HDBAuditingUserGuide.pdf

13. Blobel, B.: Authorisation and access control for electronic health record systems.
International Journal of Medical Informatics 73(3) (2004)

14. Anderson, R.: A security policy model for clinical information systems. In: Proc.
of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, USA (May
1996)

http://pages.britishlibrary.net/rwong/dpa.html
http://www.kantei.go.jp/jp/it/privacy/houseika/hourituan/index.html
http://www.hhs.gov/ocr/hipaa/
http://www.privcom.gc.ca/legislation/02_06_01_01_e.asp
http://www.nema.org/prod/med/security/upload/Break-Glass-Emergency_Access_to_Healthcare_Systems.pdf
http://www.nema.org/prod/med/security/upload/Break-Glass-Emergency_Access_to_Healthcare_Systems.pdf
http://www.himss.org/CPRIToolkit/html/4.11.html
http://www.himss.org/CPRIToolkit/html/4.11.html
http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/ HDBEnforcementUserGuide.pdf
http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/ HDBEnforcementUserGuide.pdf
http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/ HDBAuditingUserGuide.pdf
http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/ HDBAuditingUserGuide.pdf

Towards Improved Privacy Policy Coverage in Healthcare 173

15. Bhatti, R., Moidu, K., Ghafoor, A.: Policy-basd security management for federated
healthcare databases (or rhios). In: Proc. of the 2006 International Workshop on
Healthcare Information and Knowledge Management, USA, November (2006)

16. Weaver, A.C., Dwyer III, S.J., Snyder, A.M.: Federated, secure trust networks
for distributed healthcare it services. In: Proc. of the 2003 IEEE International
Conference on Industrial Informatics, Alberta, Canada (August 2003)

17. Ihe patient care coordination technical framework: Basic patient privacy consents,
supplement 2005-2006 (August 2006)

18. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
the 1994 Very Large Data Bases, Santiago, Chile (September 1994)

Requirements of Secure Storage Systems for

Healthcare Records

Ragib Hasan1, Marianne Winslett1, and Radu Sion2

1 University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{rhasan,winslett}@cs.uiuc.edu
2 Network Security and Applied Cryptography Lab

Stony Brook, NY 11794, USA
sion@cs.stonybrook.edu

Abstract. Recent compliance regulations are intended to foster and re-
store human trust in digital information records and, more broadly, in
our businesses, hospitals, and educational enterprises. In the health sec-
tor, storage and management of electronic health records have become a
vital issue. Specifically, with the passing of the Health Insurance Porta-
bility and Accountability Act (HIPAA), the security of medical records
has come into focus. HIPAA and other regulations in the health sector
require strict compliance with specific privacy and security requirements.
Unfortunately, existing storage solutions do not live up to the task of en-
suring compliance with mandated legislation. In this position paper, we
discuss the main characteristics of the health sector record management
regulations, and present a set of requirements for secure, trustworthy
storage that complies with these regulations. We also briefly analyze ex-
isting storage models, and show that they are not suitable for meeting
the requirements of health-care record storage.

1 Introduction

Accurate and detailed record-keeping, along with ensuring their privacy and
authorized access, are integral parts of managing medical information. With the
advent of electronic computing, medical records, like many other application
domains, have depended heavily on computerized storage systems for storage
and archival of health information.

However, in the digital realm, the adversaries and attackers are quite different
than the physical world – digitally stored information can be copied verbatim,
and records may be exposed to a wide variety of adversaries. To protect privacy
and security of such electronic medical records, many countries worldwide have
enacted consumer protection and privacy laws. These laws have strict guidelines
and requirements for regulation of medical record management.

Unfortunately, existing storage architectures are not capable of providing the
strong security and privacy guarantees mandated by the laws associated with
this new digital information domain. For example, several regulations require

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 174–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Requirements of Secure Storage Systems for Healthcare Records 175

mandatory record retention (with data integrity) for periods of up to 30 years.
But storing such records for a long time would require inevitable change of
storage hardware and/or storage format. The resulting migration to new servers
must be trustworthy, and verifiable. Similarly, if a medical record needs to be
removed after the mandated retention period, the storage system must guarantee
its secure deletion. Such features are not available in most of the current storage
architectures for medical records.

In this paper, we look into HIPAA and several other regulations on protec-
tion of medical records, and discuss the security and privacy requirements that
such regulations impose on record management. From this discussion, we derive
a set of common requirements for electronic health-care record storage systems.
Finally, we briefly look into several storage architectures, and show the limita-
tions of current architectures in meeting all the requirements. The contribution
of this paper is to map out the open research problems in the area, and to direct
future research endeavors for secure storage of health-care records.

2 Health Care Regulations

Management of health information has become an important and regulated area
in most countries. In the following, we briefly discuss several of these laws from
different countries, and outline their essential common mandated features.

2.1 HIPAA

The Health Insurance Portability and Accountability Act of 1996, commonly
known as HIPAA [3,7], is an attempt to update the health sector and insurance
record keeping in order to bring more accountability and better protection of con-
sumer rights. Besides regulating the insurance industry, one of HIPAA’s signifi-
cant effect is to mandate the confidentiality and integrity of medical information.

HIPAA is divided into two titles. Title I regulates health insurance cover-
age. Title II discusses digital health care records, their security, privacy, as well
as other facets of their management. The following main security and privacy
requirements are mandated by HIPAA:

– Privacy and Data Confidentiality. The privacy rule of HIPAA requires
organization to ensure that they have taken reasonable steps to ensure the
confidentiality of health care records and communication with individuals.
Individuals have the right to request correction of health care records.

– Security. Organizations outsourcing some of their record management tasks
must ensure that the third-parties also comply with HIPAA. Each organi-
zation must have established internal audit procedures for medical records.
All records must be disposed of in a trustworthy manner at the end of their
retention period. Access to hardware and software should be limited to prop-
erly authorized individuals. Data integrity must be ensured by means of
checksums, message authentication, or digital signatures. Each entity is re-
sponsible for ensuring that data within its systems have not been erased or
tampered with.

176 R. Hasan, M. Winslett, and R. Sion

Specifically, the General Rule (Section 164.306) requires entities to:

- Ensure the confidentiality, integrity, and availability of all electronic pro-
tected health information (EPHI) the covered entity creates, receives, main-
tains, or transmits;

- Protect against any reasonably anticipated threats or hazards to the security
or integrity of such information;

- Protect against any reasonably anticipated uses or disclosures of such infor-
mation that are not permitted or required by the Privacy Rule; and

- Ensure compliance by its workforce.

Additionally, Section 164.310 of HIPAA mandates storage media disposal, media-
reuse, accountability, and data backup/storage for medical records. It requires
the following:

– Disposal. 164.310(d)(2)(i) requires that covered entities must have policies
and procedures that handle the final disposition of electronic health infor-
mation records, and the media or hardware on which the records are stored.

– Media re-use. 164.310(d)(2)(ii) states that covered entities must implement
“procedures for removal of electronic protected health information from elec-
tronic media before the media are made available for re-use.”

– Accountability. 164.310(d)(2)(iii) states this: the covered entity must
“Maintain a record of the movements of hardware and electronic media and
any person responsible therefore.” In other words, organizations must log all
data migration and data provenance information.

– Backup and Storage. Finally, 164.310(d)(2)(iv) mandates that a covered
entity “must create a retrievable, exact copy of electronic protected health
information, when needed, before movement of equipment.”

2.2 Occupational Safety and Health Administration Regulation

In the United States, the Occupational Safety and Health Administration regu-
lation (Standards - 29 CFR) “Access to employee exposure and medical records.-
1910.1020” [11], controls the management of medical records for employees, and
all exposure records. Section 1910.1020(d)(1)(ii) requires that “Each employee
exposure record shall be preserved and maintained for at least thirty (30) years”.
It also requires all employee medical records to be kept for at least 30 years. For
businesses changing ownership, it must ensure the transfer of the records to the
new owner.

2.3 EU Directives

In Europe, the Directive 95/46/EC of the European Union on the protection of
personal data, provides privacy and security guarantees for personal information,
including health care records [4]. In particular, Article 6 of the directive requires
accuracy guarantees of personal records, and guaranteed disposal after the re-
tention period. Article 17 requires measures for ensuring the confidentiality and

Requirements of Secure Storage Systems for Healthcare Records 177

availability of records. In addition, most countries in Europe have their own data
protection laws. For example, in the United Kingdom, the Data Protection Act
of 1998 [2] regulates, among other information, personal health-care records. It
requires mandatory disposal of electronic records after retention period, accuracy
of information, logging any changes, and strict confidentiality.

3 Requirements

As seen in the previous section, a set of relatively consistent, broadly mandated
assurances can be found in a multitude of regulations. In the following we discuss
the main requirements that storage systems would need to adhere to, for compli-
ance purposes, including data confidentiality, records integrity and availability,
as well as secure retention, deletion and migration mechanisms.
Confidentiality and Access Control. As health-care records contain sensi-
tive information, the storage systems must ensure their confidentiality. Moreover,
only authorized personnel should have access to confidential medical records.
Consequently, to ensure confidentiality, storage systems must deploy strong en-
cryption in both the actual storage and the data pathways leading to and out.
Moreover, in the case of storage media re-use or disposal, the confidentiality of
records previously stored in such media should be ensured.
Integrity. The storage system must ensure the integrity of medical records.
In particular, it must ensure the integrity of medical records even in the case
of malicious insiders. The security mechanisms must identify any tampering of
information.
Availability and Performance. The health-care records must be accessible
in a timely manner. Medical records are frequently expanded, and patients may
also ask for correction of records. Hence, appropriate storage models should be
used to allow both performance, security, and mutability.

Timely access to medical records would require indexing techniques. However,
regular indexing schemes such as keyword index can breach privacy as the mere
existence of a word in a document can leak information [9]. For example, if the
keyword “Cancer” is present in a medical, then an adversary can assume that
the patient might have Cancer. So, the index itself must be trustworthy, and
confidential.
Logging, Audit Trails, and Provenance. All access to the storage system
should be logged in a trustworthy manner. HIPAA mandates recording all med-
ical record access information. Many of the regulations require extensive logging
to record the movement of records between systems, and the access and modi-
fication history. Consequently, the storage system must provide verifiable audit
trails and the maintenance of provenance information on the chain of records
custody.
Support for Long Retention and Secure Migration. Many of the regula-
tions require long retention periods for certain types of health-care records. The
storage system must be capable of providing long term retention guarantees.

178 R. Hasan, M. Winslett, and R. Sion

Since it is conceivable that the failure of storage servers, as well as obsolescence
of technology and formats will require migration of records, the storage system
must provide trustworthy and verifiable migration mechanisms.

Backup. There must exist strong backup and restore operations. The backup
copies should be located in a separate off-site location to ensure survival in case
of fire or natural disasters.

Cost. The storage system must also be cost effective, possibly using cheap off-
the-shelf hardware. Compliance with HIPAA and other regulations have signifi-
cant management overhead. The cost of training personnel is also another factor.
So the storage system should notbe cost-prohibitive. Media used by the storage
system should be cheap.

4 Limitations of Existing Storage Models

We now discuss the suitability and limitations of existing storage models with
respect to the above requirements. In particular, we look at relational databases,
object-storage systems, and compliance WORM storage.

Commercial solutions for HIPAA compliant storage tends to focus on
using strong encryption to provide security for electronic records [13]. Unfortu-
nately, however, such schemes do not protect against malicious insiders. More-
over, such encryption based solutions do not account for maintaining provenance
information.

Most of the early storage systems for electronic records involved relational
databases. However, securing relational databases to the extent of compliance
with the requirements described in section 3 is difficult. Relational databases are
geared more towards performance rather than security. Specifically efficiently
performing queries on encrypted data in the presence of malicious insiders as
well as guaranteeing secure record retention are significant open problems to
consider.

A promising alternative is IBM’s Hippocratic Database Technology [6], which
aims at providing regulatory compliance with data protection laws. It provides
fine-grained access control by transparently rewriting user queries and enforc-
ing various access and disclosure policies. Hippocratic databases also provide
compliance auditing, in which database access information is logged for future
forensic analysis in case of a privacy breach. However, without underlying se-
curity support, just defining semantics and enforcing them in a software query
processor still leaves things vulnerable to insider attacks with direct disk access.

In object based storage systems, usually document content hashes are used
as object IDs to locate documents [8]. This renders such mechanisms suit-
able for efficient storage of read-only content and read operations are efficient
and optimized. Moreover, information integrity can be easily assured. However,
appends and writes in the presence of malicious adversaries are difficult to
achieve in object storage, and likely slow in performance.

The most promising technology for secure storage of health records is com-
pliance WORM storage [5,9,10]. In such systems, records are kept in write-once,

Requirements of Secure Storage Systems for Healthcare Records 179

read-many times storage media. The media can be optical, or magnetic. Trust-
worthy indexing mechanisms [9] can ensure fast retrieval of data, as well as
ensuring privacy and integrity of the index. Trustworthy migration [10] can en-
sure guaranteed and verifiable transfer of records among systems. Trustworthy
deletion mechanisms can ensure complete removal of expired records. However,
compliance WORM storage is mainly suitable for records that do not require
corrections. Since medical records are expected to be corrected, and individuals
have the right to request such corrections to their medical records, allowing cor-
rections is an important feature. Currently, trustworthy WORM storage systems
do not support such corrections.

Ultimately, the trade-off between security and performance makes it difficult
to use existing secure storage systems. Most of the existing systems are geared
towards read-only settings, optimizing read operations via smart indexing and
caching. However, to support efficient and trustworthy write operations, data
retention, secure deletion, migration, such systems simply do not live up to the
requirements.

Moreover, an additional missing feature in all these systems is storage of
provenance information [1,12]. Since access to storage records must be recorded
for later audits, it is critical to record such information. With migration of records
between different systems, it is important to ensure a proper chain of custody for
the ownership and transfer of records. However, current storage systems do not
implement trustworthy provenance, and therefore, cannot fulfill this requirement
of health-care record storage.

5 Conclusion

In this paper, we explored major health care regulation acts and discussed their
impact on the requirements for associated storage support systems. We showed
that unfortunately, existing systems and data models fall short of the resulting
desiderata. We thus believe it is important to explore novel avenues and solutions
in this area that would possibly combine existing functionality creating a hybrid
model suited for trustworthy regulatory-compliant health-care record storage.
Additionally, it is important to explore and consider the impact of the additional
costs and overhead burdens such mechanisms would put onto their users and
the healthcare system in general. Ultimately, as increasing amounts of health
information are created and stored digitally, we believe compliance storage to
be a vital tool in providing trust and privacy assurances.

Acknowledgments

The authors would like to thank the anonymous reviewers for their suggestions.
This research was supported by the NSF under grants IIS-0331707, 0331690,
CNS-0325951, and CNS-0524695. Radu Sion was in part supported by the NSF
through awards CT CNS 0627554, CRI CNS 0708025 and CT CNS 0716608.

180 R. Hasan, M. Winslett, and R. Sion

Sion would also like to thank Motorola Labs, IBM Research, CEWIT and the
Stony Brook VP Office for Research for their support.

References

1. Braun, U., Garfinkel, S., Holland, D., Muniswamy-Reddy, K.-K., Seltzer, M.: Issues
in automatic provenance collection. In: Proceedings of the International Provenance
and Annotation Workshop, pp. 171–183 (2006)

2. British Parliament. Data protection act of 1998 (1998), Online at:
http://www.staffs.ac.uk/legal/privacy/dp10rules/index.php

3. Center for Medicare & Medicaid Services. The Health Insurance Portability and
Accountability Act of 1996 (HIPAA) (1996), Online at:
http://www.cms.hhs.gov/hipaa/

4. European Parliament. Legislative documents (2006), Online at:
http://ec.europa.eu/justice home/fsj/privacy/law/index en.htm

5. Hsu, W., Ong, S.: WORM Storage is not Enough. IBM Systems Journal (April
2007)

6. Johnson, C., Grandison, T.: Compliance with data protection laws using hippo-
cratic database active enforcement and auditing. IBM Systems Journal 46(2) (2007)

7. Lawson, N., Orr, J., Klar, D.: The HIPAA privacy rule: An overview of compliance
initiatives and requirements. Defense Cousel Journal 70, 127–149 (2003)

8. Mesnier, M., Ganger, G., Riedel, E.: Object-based storage: pushing more function-
ality into storage. IEEE Potentials 24(2), 31–34 (2005)

9. Mitra, S., Hsu, W., Winslett, M.: Trustworthy keyword search for regulatory-
compliant record retention. In: Proceedings of the 32nd International Conference
on Very Large Data Bases, pp. 1001–1012. ACM, New York (2006)

10. Mitra, S., Winslett, M.: Secure deletion from inverted indexes on compliance stor-
age. In: StorageSS ’06: Proceedings of the Second ACM Workshop on Storage
Security and Survivability, pp. 67–72. ACM Press, New York (2006)

11. Occupational Safety and Health Administration. Access to employee expo-
sure and medical records. - 1020 regulations (standards - 29 cfr) (1910), On-
line at: http://www.osha.gov/pls/oshaweb/owadisp.show document?p table=
STANDARDS &p id=10027

12. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

13. Smart Card Alliance. HIPAA compliance and smart cards: Solutions to
privacy and security requirements (September 2003), Online at: http://
www.datakey.com/resources/HIPAA Compliance and Smart Cards FINAL.pdf

http://www.staffs.ac.uk/legal/privacy/dp10rules/index.php
http://www.cms.hhs.gov/hipaa/
http://ec.europa.eu/justice_home/fsj/privacy/law/index_en.htm
http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS &p_id=10027
http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS &p_id=10027
http://www.datakey.com/resources/HIPAA_Compliance_and_Smart_Cards_FINAL.pdf
http://www.datakey.com/resources/HIPAA_Compliance_and_Smart_Cards_FINAL.pdf

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 181–192, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Intrusion Detection System for Detecting Phishing
Attacks

Hasika Pamunuwa1, Duminda Wijesekera1, and Csilla Farkas2

1 George Mason University, 4400 University Drive, Fairfax, VA, USA, 22030
2 University of South Carolina, Columbia, SC 29208

hpamunuw@gmu.edu, dwijesek@gmu.edu, farkas@cse.sc.edu

Abstract. In this paper we present a hybrid system to protect private data from
phishing attacks. Our solution uses intrusion detection methods to identify
potential phishing emails then relies on web crawlers to validate or reject this
suspicion. We also use external information coming through RDF Site
Summaries (RSS) alerts about potential phishing sites. Our two-layered
phishing detection system reside on the server of the organization, thus it is not
vulnerable to blocking attacks targeting web browsers.

1 Introduction

One of the emerging serious threats against personal data security is phishing.
Phishing attacks are often performed by sending out emails that seem to originate
from a trusted party. The objective is to deceive the recipient to release sensitive
information such as usernames, passwords, banking details, or credentials [8]. The
message attempts to convince the receiver that it is to his/her benefit to enter the
requested information at the indicated web site. After obtaining this information, the
phishers may use it for fraudulent activities, like identity theft. Current solutions to
counteract phishing attacks are based on identifying potential phishing sites using
browser plug-ins. However, techniques to block such identification have emerged.
Moreover, identification of phishing sites is not trivial, resulting in missed detection
of attacks.

In this paper, we propose the use of an organization-wide and server-based
intrusion detection system (IDS) for identifying phishing email and evaluate the sites
they refer to. Our system, shown in Figure 2, consists of two major components: (a) a
system-wide data capturing facility that categorizes some of the incoming e-mails as
potential phishing activities, and (2) a secondary validation/refutation system that
crawls the advertised sites to decide whether they are phishing sites.

More specifically, the contributions of this work are four fold. First, we propose
an organizational level architecture to detect phishing activities in incoming traffic.
By doing so, phishing traffic can be filtered at the perimeter of the organization, thus
limiting the dependence on individual users’ security practices and browser-based
phishing detection methods. Second, we use intrusion detection system to detect
potential phishing e-mails. This method ensures that all incoming traffic is evaluated.
Third, upon the detection of suspicious e-mails, our crawlers visit the web sites

182 H. Pamunuwa, D. Wijesekera, and C. Farkas

indicated by the e-mail and recursively follow all links from the potentially phishing
sites. This step is motivated by the observation that most phishing sites eventually
visit the site that they impersonate. We use this observation in the final validation
step, leading to the fourth contribution. That is, we recursively traverse all web sites
referred to in the site under investigation. When this recursion terminates, our
algorithm strips off the graphics of the original and potentially phishing sites and
assigns a score for the differences of the web sites.

The rest of the paper is as follows. Section 2 describes related work. Section 3
describes the proposed system. Section 4 describes the results of our experiments.
Section 5 describes the experimental results and Section 5 concludes the paper.

2 Phases of Phishing Attacks and Current Solutions

In this section we give an overview of the different phases of a phishing attack and
the currently available phishing prevention methods.

2.1 Phases of Phishing

Our method to detect phishing attacks exploits the phases of a phishing attack [2]: (A)
Planning, (B) Setup (C) Attack (D) Collect information (E) Commit fraud (F) Post-
attack clean-up.

A. Planning: The first step of the planning activity is to select an institution to be
phished, such as a bank or credit card service. These institutions generally provide
online services, and require specific information from their customers. Common
examples are credit card information and credentials to e-commerce web sites. For
example, a phisher seeking credit card information would send e-mail requesting
confirmation of credit card details. The sites pointed to in phishing email are
impersonations hosted on a compromised machine. They contain HTML forms to be
filled out to confirm their records.

The second step of the planning activity is to select the method of information
extraction. Common examples are putting an HTML link in an e-mail message to
register within a domain with a sub domain that closely matches the impersonated
institutions URL. An example phishing on eBay sign-in page may point to the web
site http://signin.ebay.com.example.com where the actual eBay sign-in page is
https://signin.ebay.com. The objective of this stage is to design a URL that will be
difficult for a reader to distinguish from that of the legitimate institution. In particular,
novice users may fail to recognize the fine differences in the addresses, and reveal
their information.

Figure 1 show an instance of a phishing site that was impersonating
ebay.com’s sign-in page. The site is hosted at http:// 67.154.85.178/ .ws2/
safeharbor.verify.ebay.com/login.php and uses the URL of a compromised machine.
Note the hierarchy of the location; it ends with ebay.com in its path which gives the
impression to the novice user that this is the original ebay.com’s sign in page.

The third step of the planning stage is to find a compromised machine that could
host the phishing web-site. In order to ensure that the phishing site does not arouse
victim user’s curiosity or doubt, they are designed to closely resemble the style sheets

 An Intrusion Detection System for Detecting Phishing Attacks 183

and the structures of the victim institution. Detecting web-page structure is
extensively discussed in [3]. We use their method in this work for the detection of
phishing sites. Wenyin et al. [9] describe three metrics to measure the visual similarity
of two sites; block level similarity, layout similarity and overall styling similarity. An
additional observation of us is the string similarity between the phishing site and the
phished site.

Fig. 1. A Phishing web site for eBay.com

Web pages can be designed in HTML using numerous ways, such as using table
structures using Cascading Style Sheets based structures and structural changes
defined using JavaScripts.

Hence it is not always true that phished site and the phishing sites should used the
same method of structural specification. But a phisher cannot change much is the
contents of the page to remain authentic-looking. Consequently, we extract the
content from a site and strip off all the HTML tags obtain all strings that belong to a
page and use the remaining text content to distinguish between the phishing and
phished sites.
B. Setup: Phishers setup all the resources used in the rest of the process during this
stage. First they design and setup the HTML structure of the target site. As stated, the
styling of a phishing site is similar to that of the victim institution. A phishing page
always contains a HTML form page for the victim user to post information to the
fraudulent web server. This form may be an exact copy of the form in the phished site
or a slightly modification. Because the primary objective is to obtain all information
entered in the form, phishers may use server side scripting to post the information on
a specific location. If e-mail is used as the primary delivery mechanism of the
captured information, there would be a mail server residing on the same compromised
machine. Some possible delivery mechanisms are:

1. Store in a database or a flat file
2. Send as text message to a mobile device
3. Post to a message forum

184 H. Pamunuwa, D. Wijesekera, and C. Farkas

Because of the short life-times of phishing sites phishers are known to thoroughly
test their delivery mechanisms.

C. Attack: During this stage the phisher lures victimized customers to a phishing
URL. The most commonly way of contacting victims is using e-mail [1]. Other
methods are to post messages with links on public chat rooms, via message boards,
via newsgroups, and subscribed RSS feeds.

D. Collection: During this stage, the phisher collects the responses from victims.
Phishing sites contain an HTML form with an action method that sends an e-mail,
stores or alerts a mobile device on obtaining sensitive data.

E. Fraudulent Use of Phished Information: During this period, phished information
is used for fraudulent activity. Most common activities are:

1. Using collected credentials: If captured information contained credit card or
any financial source, they are used to purchase or pay for services provided
on the Internet.

2. Credentials used to second stage attacks: If the captured information had
credentials for an access controlled site, use them to gain entry.

3. False registration: Use personal identity attributes to impersonate and
obtain online privileges

F. Post Attack Activity: Once the attacker reaches their goal of victim they would
deliberately shut down the server to evade capture by authorities. They would switch
back and forth as to give an impression that the server is no longer available and this
could help them to deceive any monitors on these compromised machines.

2.2 Phishing Prevention

Current solutions use strong spam filters to isolate phishing solicitations or capture
phishing sites at the browser. For example, Zhang et al. [8] propose a solution using
term frequencies and inverse document frequencies between a potentially phished and
phishing sites to classify the latter as a phishing site.

Fette et al. [4] proposes PILFER, an e-mail filter that uses a classifier based on 10
features relevant to phishing activity. This solution has been able to classify phishing
email with a true positive rate of 92% and a false positive rate of 0.1%. The 10
features used for classifying are: (1) IP-based URLs. (2)Age of links (domain names)
– this is calculate by querying whois data. (3) Non-matching URLs – these are
basically masked HTML links. (4) “Here” links to non modal domain. (5) HTML
emails. (6) Number of links. (7) Number of Domains. (8) Number of dots – dots with
in a URL. (9) Contains JavaScript. (10) Untrained SpamAssasin Output.

This model uses a sample training dataset. A freely available SVM library is used
as the classifier. The system has also been tested with other approaches, such as
Bayesian classifying, decision trees and rule based approaches. The dataset used for
this experiment uses 6950 non phishing emails and 870 phishing emails.

SpamAssassin [14] is another tool that recognizes spam containing phishing email.
[4]state that SpamAssassin has a false negative of 15% for spam e-mails, and
performs worst when tested with 10 fold cross validation. SpamAssassin uses a wide
range of heuristic tests on mail headers in order to identify spam, and can be

 An Intrusion Detection System for Detecting Phishing Attacks 185

customized. For algorithms, it uses text analysis, Bayesian filtering, DNS blocklists, a
collaborative filtering database, and a Stochastic Gradient Descent method in training
a neural network. This is used for its scoring based on perception that uses a single
perception with a logsig activation function that maps the weights to SpamAssassin’s
score space. SpamAssassin does not delete email from mail boxes, but it can route
classified e-mail to mail boxes or folders.

Chou et al. [5] proposes a browser-based plug-in, SpoofGuard, that monitors users
internet activities and warns if the tool classifies a visiting web-site as a phishing
page. SpoofGuard uses the observation that a page is loaded from an e-mail message
and whether the URL was visited before. The authors propose the use of the
following properties: (1) Logos – use of images. (2) Suspicious URLs – urls that
contains IP address or higher length urls. (3) User Input – pages that has form input.
(4) Short lived – the spoof sites are shut down with in 2 – 3 days. (5) Copies – similar
contents. (6) Sloppiness or lack of familiarity with English – misspellings and
grammar errors. (7) HTTPS is uncommon – do not user https with secure sockets
layer.

SpoofGuard uses 3 methods to determine impersonation: (1) a stateless method
that determines whether a downloaded page is suspicious, (2) a stateful method that
evaluates a downloaded page in light of previous user activity, and (3) a method that
evaluates outgoing post data. SpoofGuard uses a standard aggregate function to
calculate the total spoof score (TSS) computed as:

TSS(page)= Σ1
n wiPi + Σ1,1

n,n wi,jPiPj + Σ1,1,1
n,n,n wi,j,kPiPjPk

For a given downloaded web page and a browser state TSS produce a number Pi
within [0,1] where 1 indicates a page more likely to be a spoof page. The wi’s are
preset weight to minimize false positives. SpoofGuard has a configuration pop-up
screen that requires a user defined spoof rating threshold. This allows setting
independent weights and security levels for the domain name, url, link, password and
image checks. The user interface alerts suspicious sites with a traffic light symbol
lighting for the degree of the probable spoof activity. The information which was
based for classifying is available for the user.

Even though a link from an e-mail is a good method for phishing detection, a user
clearing the browser history could result in many false positives. Sensitivity
decreasing on this system would result in false negatives while increasing would
result in false positives. Also as shown in [5] client side detection systems prevention
a single user using one web browser. Conversely, intrusion detection systems, if
usable could detect and remove phishing sites in large scale.

Most known systems use some type of trapping mechanism that alerts for potential
spam. They setup a sensitivity level, where higher values generate alerts for slightest
probable spam and lower levels generates alerts for most probable spam. Firstly, these
tools have false positives, and secondly, they could be disabled by using a Trojan,
thereby opening the browser for phishing.

HoneyTank [7] collects Spam using a honeynet and automatically generates a
pattern. The pattern is to be used by a network based intrusion detection systems.

186 H. Pamunuwa, D. Wijesekera, and C. Farkas

Thus their system is similar to ours, but does not crawl or use Snort to classify
potential phish. A HoneyTank is a workstation receiving TCP segments sent to
unallocated IP addresses and replying to those segments to emulate real end systems
that supports TCP services. They use Advanced Sequential Analyzer on Unix
(ASAX) as the intrusion detection system. ASAX is a generic system that analyzes
sequential files like security audits trails. It is composed with three parts which are
analyzer, rule declarations, and format adaptor. The analyzer receives the input from
the format adaptor and analyzes according to the declared rules.

Cordero et al. [10] use rendered images as a basis to relate a potentially phishing
site to a phished site. They propose a server-based solution using web pages
rendered as images, where a whole page rendered as an image is used for
classification as a phishing site, using the safari [15] browser based parser. This
method uses the size of the rendered image size. This prototype is developed with
safari HTML rendering engine Cocoa [16], GNU Octave [17] for data processing,
Image magick [18] for image processing, python to hold all the processes together
and the R statistical platform [20] for classification. But the rendered size of a web
page differs due to the machine’s screen resolution, and in particular, a lower screen
resolution would render a web page out of the active viewing area. It is still
questionable as to how well this system scales. Although this is a server based
approach that attempts to identify phishing hosts before email containing their
images are delivered to a client browser, its continuous monitoring of selected
target sites may not scale well.

Fig. 2. The system architecture

 An Intrusion Detection System for Detecting Phishing Attacks 187

3 Proposed Solution

We propose using an organization-wide and server-based intrusion detection system
(IDS) to identifying phishing email and recursively crawl the identified sites. Our
system, shown in Figure 2, consists of two major components: (a) a system-wide data
capturing facility with a well-advertised mail server that seeks mail (with the hope of
collecting phishing solicitations) and categorizes some of them as potential phish, and
(2) a secondary validation or refutation component that crawls the potentially
phishing sites. Organization-wide solutions allow the security officer to uniformly
enforce security requirements, reducing the risk of violations due to lack of
safeguards and updates.

3.1 Phishing Recognition IDS

The first component of our system consists of a SMTP server (#2 in Figure 2), an
Apache web server (#3 in Figure 2), and a Spam filter (#4 in Figure 2). Our current
implementation uses Snort for traffic filtering. The IDS scanner scans all received
mail messages and flags some of them as potential phish, and enters them into a
database (#6 in Figure 2). Emails that contain embedded HTML are classified as
potentially phishing requests as in [4]. We use MySQL to store information about
potential phishing messages, where database entries consist of the e-mail contents,
time of receipt, and the originating IP address. A daemon process that runs on the
same machine scans all URLs listed on flagged e-mail, strips off their HTML tags and
identifies if they have been observed earlier. If the sites have not been evaluated
previously, the phishing validation component tries to determine whether they are
phishing sites. We use well documented characteristics of phishing e-mails to detect
them. Our Snort filtering flag email as potential phish if they have some of the
following characteristics:

1. HTML encoded in e-mail.
2. Any URL including IP addresses.
3. URLs that has been masked with HTML to a different address
4. Cross site images. They are scanned for further analysis.
5. All images that are not categorized as cross site reference are hashed using

the MD5 algorithm for further analysis on the monitoring sites for phishing
activity.

Although our simple Snort-based phishing IDS reorganization algorithm is quite
primitive, our architecture has several advantages. First, the recognition of a phishing
e-mail is independent of an individual user’s settings and web browser based policies.
Second, because it is server-based, it allows uniform security enforcement within an
organization and reduces the efforts of performing updates. Third, our solution is not
vulnerable to attacks that bypass client-browser based defenses. Fourth, our system is
constructed so that the Snort based filtering algorithm can replaced by a more
sophisticated versions, which constitute one aspect of our ongoing work.

188 H. Pamunuwa, D. Wijesekera, and C. Farkas

3.2 Validating Phishing Sites

In our present implementation, the validation component uses two primary inputs.
The first input contains the updated database entries. The second input contains the
updates received from external trusted entities. These updates, emitted continuously,
notifies about phishing sites using Really Simple Syndication / Rich Site Summary or
RDF Site Summary (RSS) feeds [11], (#5 in Figure 2). We use a separate real-time
engine to validate (or refute) the phishing email collected in the database by our first
component (#8 in Figure 2). This engine extracts the web sites from potential
phishing email, and uses web crawlers to visit these sites. The crawlers recursively
follow links of the potentially phishing sites. All HTML pages from all visited
locations are downloaded and evaluated by our algorithm. Our aim is to differentiate
them from known sites that have been targeted for impersonation. Our algorithm
starts with the list published by the Anti-Phishing Working Group [1] and extends it
locally as our categorization grows. The high-level description of our algorithms is
given in Table 1.

Table 1. High-level descriptions of algorithms used inside the matching algorithm

procedure
createLegitimateIndex(read links
from file)
{

for each legitimate links
{

 call nutch(link);
}
saveIndex();
return indexPath();

}

procedure confirmPhishing()
{
 thread1:
 indexPath = creatLegitimateIndex(local file with links);

 thread2:
 if (linkAlert)
 {
 terms = crawlURL(url);
 documentID = matchTerms(terms, indexPath);
 probableHost = documentID.getHost();
 }
 return probableHost;
}

function crawlURL(url)
{
 create new http connection to url;
 parse HTML for each line;
 create terms from “<title>”
 or “<head>” tags
 save document content;
 for(ech links found within HTML)

{
 //recursive call for further urls
found within HTML
 crawlURL(link);
 }

 release connection;
 return terms;
}

function matchTerms(String terms,legitimate index
path)
{
 extract first 10 lines;
 for (each line)
 {
 queryIndex(line,path);
 score[i] = doc.getLuceneScore;
 url = doc.get(“url);
 if(score[i]>score[i-1])
 {
 if(url.equals(preUrl)
 aggScore += score[i];
 documentID = score[i].getSearchResult();
 }
 }
 return documentID;
}

As Table 1 show, the procedure creatLegitimateIndex(file) creates the legitimate
search indexes to match the probably phishing terms. This procedure is initially set
with a static e-commerce URLs that are marked from antiphishing work group as sites
which were mostly phished in the recent past. This procedure crawls with Lucene

 An Intrusion Detection System for Detecting Phishing Attacks 189

Nutch [21] and saves all the document contents as an index. The confirmPhishing()
procedure takes a new row from the snort alert database table as input and it crawls on
that URL and parse all its contents to a text file. This procedure first calls the
procedure crawlURL(url) that takes a uniform resource locater URL as input
and return an array of string string* and an array of links link* as outputs in one
local buffer. The procedure confirmPhishing() then calls the function
matchTerms(indexPath) with the legitimate index path to search for the closest term.
matchTerm(terms,index) method calls a Lucene [21] search query on the legitimate
search index with the terms derived from the crawl on the probable phishing URL.

The function matchTerm(terms,index) takes two inputs: an array of strings that do
not contain URLs and an index path. It traverses the passed terms in order of the lines
returned from the crawl. We search our index for each line and get the match score
and count it to get the aggregate of the highest possible URL. We take the top four
scoring URLs to analyze the matches.

The rationale behind this step is that most phished web sites finally point to the
web site that it impersonates and therefore an automated recursive descent through its
links using an automated crawler would find it. Finally, as shown in block #9 of
Figure 2, we feed back our findings as an RSS feed to whoever wants to get our alerts.

4 Experimental Results

We have implemented the system as described in Section 3. For an experimental run,
we collected a data set consisting of phishing sites as described in an anti phishing site
and used them with our implementation. The reason for doing so was to determine the
accuracy of detection, which is an important parameter of any IDS system. The
outcome we obtained was analyzed along two dimensions: (a) accuracy and (b)
timeliness, described respectively as follows.

Accuracy: We compared the detected phishing sites against the sites that are being
impersonated. To do so, we indexed the HTML String content of all the legitimate
web sites using an open source Web Crawler [21]. We crawled the web-sites which
were flagged as phish by our snort sensors and captured their HTML string content.
Then we queried our legitimate search indexes with the content we got as the result of
our crawl on the phishing sites. Our objective of finding the closest matches against
the legitimate index was achieved by aggregating scores from lucene queries.

1. Get the logs and look for false positives on matches
2. Graph for correctness of matching instances
3. Graph on false positives that were marked as matching instances
4. Scoring analysis, look for stats on sores – deviation curve of the scores
5. Accuracy through searching

The experiment was done with Snort capturing 313 URLs with 150 phishing pages
and an additional 163 non-phishing HTML embedded e-mails. The contents stored in
the final results files are:

190 H. Pamunuwa, D. Wijesekera, and C. Farkas

1. Total returned lines URL1 – snort based phishing URL
2. Total returned lines URL2 – probable attacked URL
3. Start time (in milliseconds) when Snort first issued its alert to the database.
4. End time (in milliseconds) when we confirmed if the alert was correct or

incorrect.

The total number of URLs that returned at least one matching lines were 100. The
statistics of the number of lines matched are given in Table 2, and the individual
scores of the matches are graphed in Figure 4, where the horizontal axis given the
entry number in the database table and the vertical axis is the percentage of matching
lines.

Table 2. Statistics

Deviation on returned
Score 1 Score 2 Score 3 Average

Standard Deviation 0.14 0.08 0.05 0.06
Mean 0.36 0.26 0.21 0.28

Timing: We have collected the following times:

1. The time it takes to capture probable links upon a receipt of spam e-mail
2. Time it takes to feed to crawlers
3. Crawler Response time
4. Time to search through for activity
5. The time taken from beginning of the activity.

The graph in Figure 3 shows the time taken to crawl 181 pages, with an average of
7.4 seconds.

Fig. 3. Accuracy Scores

 An Intrusion Detection System for Detecting Phishing Attacks 191

Fig. 4. Time to Crawl

The results were based upon the scores retrieved from the Lucene API. Figure 3
shows 3 scorings based on the best matches derived from the search queries on the
index. The dark lines (in Fig 3) gave the best aggregate scores for matches, and the
medium dark series providing the 2nd best and the lightest showing the 3rd. Our
statistics shows the average scores given that the best matches for all 3 series. Figure
4 presents the time between DNS resolution and string extraction that includes
crawling delays. Five data points exceeding the graph are dues to DNS resolution
failures or sites being down.

5 Conclusions

Phishing is becoming a popular form of fraud on the Internet resulting in disclosure of
personal data. Reacting to these attacks, the Internet community has responded by
allowing the browsers to setup many methods to detect and warn of potential phishing
attacks. Although successful, these solutions suffer from two shortcomings: (a) they
depend upon users setting up their own thresholds to be warned of phishing and (b)
browser-based solutions are vulnerable to attacks that disable these defenses.

We propose an institution-wide, two-staged IDS system to detect phishing. Our
solution performs an initial estimation of phishing email, followed by automated web
crawlers visiting those potential phishing sites. Recursive crawling of potentially
phishing sites increases the accuracy of the detection whether a web site impersonates
another. Although our algorithms used in both stages are preliminary, our
implemented framework can be used with any other algorithm in their place. Our
initial results are promising with an overall detection time of 7.4 seconds. Our
ongoing work is enhancing the detection algorithms to detect phishing sites. We are
also working on using Darknets [19] to capture additional, potentially phishing
emails.

192 H. Pamunuwa, D. Wijesekera, and C. Farkas

References

1. The Anti-Phishing Working Group (APWG): http://www.antiphishing.org
2. Financial Service Technology Consortium (FSTC): North-America based financial

institutions, technology vendors, independent research organizations and government
agency, available at:

 http://www.fstc.org/projects/docs/FSTC_Counter_Phishing_Project_Whitepaper.pdf
3. Chen, Y., Ma, W.-Y., Zhang, H.-J.: Detecting Web Page Structure for Adaptive Viewing

on Small Form Factor Devices. In: WWW 2003 (May 20-24, 2003)
4. Fette, I., Sadeh, N., Thomasic, A.: Learning to Detect Phishing Emails. WWW (to appear,

2007), available at:
 http://www.cs.cmu.edu/ tomasic/doc/2007/FetteSadehTomasicWWW2007.pdf

5. Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.C.: Client-side defense
against web-based identity theft (Webspoof), available at:

 http://www.crypto.stanford.edu/SpoofGuard/webspoof.pdf
6. Provos, N.: A Virtual Honeypot Framework. available at:

 http://www.niels.xtdnet.nl/papers/honeyd.pdf
7. Vanderavero, N., Brouckaert, X., Bonaventure, O., Charlier, B.L.: The HoneyTank.: A

Scalable Approach to collect malicious Internet Traffic. In: international infrastructure
survivability workshop (IISW’04) 2004, held in conjunction with the 25th IEEE
International Real-time systems symposium (RTSS04), IEEE Computer Society Press, Los
Alamitos (2004), available at:

 http://www.info.ucl.ac.be/people/OBO/papers/honeytank.pdf
8. Zhang, Y., Hong, J., Cranor, L.: CANTINA: A Content Based Approach to Detecting

Phishing Sites. WWW (to appear, 2007), available at www.cups.cs.cmu.edu/trust.php
9. Wenyin, L., Huang, G., Xiaoyue, L., Min, Z., Deng, X.: Detection of Phishing Webpages

based on Visual Similarity. WWW (May 10-14, 2005) Chiba, Japan (2005)
10. Cordero, A., Blain, T.: Catching Phish: Detecting Phishing Attacks From Rendered

website Images. available at: http://www.cs.berkeley.edu/ asimma/294-fall06/ projects/
reports/cordero.pdf

11. RSS Feeds. available at: http://en.wikipedia.org/wiki/RSS_(file_format)
12. The Wdiff tool. available at: http://www.gnu.org/software/wdiff/wdiff.html
13. An HTML parser. available at: http://htmlparser.sourceforge.net/
14. The Apache SpamAssassin Project. available at: http://spamassassin.apache.org/
15. Apple Mac OS X Safari Browser. available at:

 http://www.apple.com/macosx/features/safari/
16. Safari Cocoa Plugin. Available at: http://developer.apple.com/internet/safari/
17. GNU Octave. Available at: http://www.gnu.org/software/octave/
18. ImageMagick. Available at: http://www.imagemagick.org/script/index.php
19. The Darknet Project. Available at: http://www.cymru.com/Darknet/
20. The R-Project. Available at: http://www.r-project.org/
21. Lucene Nutch. http://www.lucene.apache.org/nutch

A Three-Dimensional Conceptual Framework for

Database Privacy

Josep Domingo-Ferrer

Rovira i Virgili University
UNESCO Chair in Data Privacy

Department of Computer Engineering and Mathematics
Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia

josep.domingo@urv.cat

Abstract. Database privacy is an ambiguous concept, whose meaning
is usually context-dependent. We give a conceptual framework for tech-
nologies in that field in terms of three dimensions, depending on whose
privacy is considered: i) respondent privacy (to avoid re-identification
of patients or other individuals to whom the database records refer); ii)
owner privacy (to ensure that the owner must not give away his dataset);
and iii) user privacy (to preserve the privacy of queries submitted by a
data user). Examples are given to clarify why these are three indepen-
dent dimensions. Some of the pitfalls related to combining the privacy
interests of respondents, owners and users are discussed. An assessment
of database privacy technologies against the three dimensions is also
included.

Keywords: Statistical database privacy, Private information retrieval,
Privacy-preserving data mining, Security and privacy of electronic health
records.

1 Introduction

The meaning of database privacy is largely dependent on the context where this
concept is being used. In official statistics, it normally refers to the privacy of the
respondents to which the database records correspond. In co-operative market
analysis, it is understood as keeping private the databases owned by the various
collaborating corporations. In healthcare, both of the above requirements may
be implicit: patients must keep their privacy and the medical records should not
be transferred from a hospital to, say, an insurance company. In the context
of interactively queryable databases and, in particular, Internet search engines,
the most rapidly growing concern is the privacy of the queries submitted by
users (especially after scandals like the August 2006 disclosure by the AOL
search engine of 36 million queries made by 657000 users). Thus, what makes
the difference is whose privacy is being sought.

The last remark motivates splitting database privacy in the following three
dimensions:

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 193–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 J. Domingo-Ferrer

1. Respondent privacy is about preventing re-identification of the respondents
(e.g. individuals like patients or organizations like enterprises) to which the
records of a database correspond. Usually respondent privacy becomes an
issue only when the database is to be made available by the data collector
(hospital or national statistical office) to third parties, like researchers or the
public at large.

2. Owner privacy is about two or more autonomous entities being able to com-
pute queries across their databases in such a way that only the results of the
query are revealed.

3. User privacy is about guaranteeing the privacy of queries to interactive
databases, in order to prevent user profiling and re-identification.

The technologies to deal with the above three privacy dimensions have evolved
in a fairly independent way within research communities with surprisingly little
interaction:

– Respondent privacy is pursued mainly by statisticians and a few computer
scientists working in statistical disclosure control (SDC), also known as sta-
tistical disclosure limitation (SDL) or inference control [17,26].

– Owner privacy is the primary though not the only goal 1 of privacy-preserving
data mining (PPDM, [5]), a discipline born in the database and data mining
community. Interestingly enough, the term privacy-preserving data mining
independently and simultaneously appeared in the cryptographic
community [18,19] to denote a special case of secure multiparty computa-
tion where each party holds a subset of the records in a database (horizontal
partitioning).

– Finally, user privacy has found solutions mainly in the cryptographic commu-
nity, where the notion of private information retrieval was invented (PIR, [8]).

Only quite recently some researchers have started to look for holistic privacy
solutions, but to the best of our knowledge no comprehensive technology cover-
ing the three dimensions above exists yet. In [6] the apparent conflict between
respondent privacy and user privacy is highlighted: it seems necessary for the
data owner to analyze the user queries in order to check that they will not re-
sult in disclosure of sensitive respondent data. In [3], a new technology called
hippocratic databases is described which seeks to ensure respondent privacy and
owner privacy; examples related to healthcare are provided, with respondents
being patients and data owners being hospitals.

1.1 Contribution and Plan of this Paper

The general aim of this paper is to clarify the independent nature of the pri-
vacy of respondents, owners and users in databases. Specifically, it will be shown
1 In [13], a PPDM approach based on randomized responses is presented whose primary

aim is claimed to be respondent privacy; however, typical respondents are unlikely to
have or use the proposed randomizing device when answering a survey, whereas data
owners could make use of it to protect their own privacy.

A Three-Dimensional Conceptual Framework for Database Privacy 195

that guaranteeing privacy for one of those entities does not ensure privacy for
the other two. These three privacy dimensions constitute a conceptual frame-
work that can be used to classify technologies based on whose privacy they
offer.

In Section 2 we show that respondent privacy and owner privacy are indepen-
dent dimensions. Section 3 illustrates the independence of respondent privacy
and user privacy. Section 4 deals with the independence of owner privacy and
user privacy. A tentative assessment of technologies according to the three pri-
vacy dimensions is given in Section 5. Section 6 contains some conclusions on
the simultaneous satisfaction of the three privacy dimensions as well as topics
for future research.

2 Independence of Respondent Privacy vs Owner Privacy

If a dataset is published without any anonymization masking, in general it will
violate both respondent and owner privacy. However, there are more interesting
cases.

Respondent privacy without owner privacy. Consider the patient toy dataset 1 in
Table 1 (left). Assume that the records have been obtained by a pharmaceutical
company which is testing a new drug against hypertension. All patients in the
dataset suffered from hypertension before starting the treatment. Direct identi-
fiers have been suppressed, but height and weight constitute key attributes in
the sense of [9,20], i.e. they identify the respondent with some degree of ambi-
guity 2: an intruder can easily gauge the height and weight of an individual he
knows in order to link the identity of that individual to a record in the dataset.
The remaining attributes (systolic blood pressure and AIDS) are confidential
attributes.

Luckily enough for the patients in Dataset 1 of Table 1, the dataset turns
out to spontaneously satisfy k-anonymity [21,20,23] for k = 3 with respect to
the key attributes (height, weight). In other words, each combination of the key
attributes appears at least 3 times. Thus, if 3-anonymity is considered to be
enough protection for patients, Dataset 1 offers respondent privacy and could
be published as far as the patients are concerned 3.

However, since Dataset 1 is the one actually obtained in the clinical drug
trial, the pharmaceutical company is unwilling to share those data with possible

2 Height and weight make sense as key attributes only in small populations. In large
populations, there are many individuals sharing similar weights and heights. How-
ever, we keep those two attributes as example key attributes for the sake of clarity.

3 If records sharing a combination of key attributes in a k-anonymous dataset
also share the values for one or more confidential attributes, then k-anonymity
does not guarantee respondent privacy. A stronger property called p-sensitive k-
anonymity [24] is in general required: there should be at least p distinct values of
each confidential attribute within each group of records sharing a combination of
key attributes.

196 J. Domingo-Ferrer

Table 1. Left, patient data set no. 1. Right, patient data set no. 2.

Height Weight Blood pressure AIDS
(cm) (kg) (syst, mmHg) (Y/N)

175 76 117 Y
175 76 131 N
175 76 122 N
180 81 115 N
180 81 122 Y
180 81 146 N
190 95 110 N
190 95 115 Y
190 95 125 N
190 95 140 N

Height Weight Blood pressure AIDS
(cm) (kg) (syst, mmHg) (Y/N)

160 110 146 N
170 65 117 Y
173 75 131 N
175 80 122 N
180 68 115 N
183 81 122 Y
187 95 110 N
190 95 115 Y
192 99 125 N
192 101 140 N

competitors. Therefore publication of the dataset is compatible with respondent
privacy but violates the owner privacy.

Respondent privacy and owner privacy. If a dataset is adequately masked before
release, then both owner and respondent privacy are obtained without signifi-
cantly damaging the utility of the data for designated user analyses. There are
plenty of examples in the literature along this line, some of which are:

– In [5], noise addition is used to mask an original dataset for owner privacy
and, to a large extent, for respondent privacy. Regarding utility, the distri-
bution of the original dataset can still be reconstructed from the noise-added
data, so that decision-tree classifiers properly run on the masked data.

– In [1], masking through condensation (actually a special case of multivariate
microaggregation, [10]) is proposed to achieve privacy-preserving data min-
ing. Since the covariance structure of the original attributes is preserved, a
variety of analyses can be validly carried out by users on the masked data.
Since microaggregation/condensation with minimum group size k on the key
attributes guarantees k-anonymity ([12]), the approach in [1] can also guar-
antee respondent privacy.

Hippocratic databases [4,3] mentioned above are a real-world technology in-
tegrating k-anonymization for respondent privacy and PPDM based on noise
addition [15] for owner privacy.

Owner privacy without respondent privacy. Imagine that the patient dataset
obtained by the pharmaceutical company is not Dataset 1 in Table 1, but Dataset
2. The new dataset is no longer 3-anonymous with respect to the key attributes
(height, weight). Therefore, releasing a single record is a violation of respondent
privacy: the patient’s blood pressure and AIDS condition could be linked to
his/her identity by means of the unique patient’s key attributes. In fact, merely
revealing the name of a patient who took part in the trial already discloses that
he/she suffers from hypertension (only patients with hypertension underwent
the trial).

A Three-Dimensional Conceptual Framework for Database Privacy 197

However, neither revealing a single record nor the name of someone who took
part in the trial can be said to violate the data owner’s privacy (especially if the
dataset is large). Thus, we can have owner privacy without respondent privacy.

A subtler example is conceivable with the method proposed in [5] and men-
tioned above. In [11] it is shown that, for higher-dimensional datasets, the prop-
erty of the method in [5] that the distribution of the original data can be recon-
structed from the noise-added data can result in violation of respondent privacy.
The reason is that, for higher dimensions, data tend to become sparse, i.e. with a
lot of rare combinations of attribute values: if the reconstructed distribution fits
the multidimensional histogram of the original data too well, rare combinations
in the original data are disclosed. This is a non-trivial case of owner privacy
without respondent privacy.

3 Independence of Respondent Privacy and User Privacy

The trivial case with neither respondent nor user privacy is the most common
one: a queryable database where neither records nor user queries undergo any
anonymization (in particular, this is the case of Internet search engines). Situa-
tions with at least respondent or user privacy are discussed in the next subsections.

Respondent privacy without user privacy. The conflict between respondent pri-
vacy and user privacy is apparent in statistical disclosure control of interactively
queryable statistical databases. The scenario is a database to which the user
can submit statistical queries (sums, averages, etc.). The aggregate information
obtained by a user as a result of successive queries should not allow him to infer
the values of confidential attributes for specific individuals (respondent privacy).
Currently employed strategies rely on perturbing, restricting or replacing by in-
tervals the answers to certain queries. Examples of those three strategies can be
found in [7,14,16], respectively.

All SDC methods for interactive statistical databases assume that the data
owner operating the database exactly knows the queries submitted by users.
This knowledge is deemed necessary to check that users do not submit a series
of queries designed to isolate a single record in the database. Thus, there is no
user privacy whatsoever. Even without user privacy, the SDC problem in this
kind of databases is known to be difficult since the 1980s, due to the existence
of the tracker attack [22].

Respondent privacy and user privacy. If the records in an interactively queryable
statistical database are k-anonymous (spontaneously as in Dataset 1 or after a k-
anonymization process as described in [2,12]), then no user query can jeopardize
respondent privacy. In this case, the use of private information retrieval protocols
to preserve the privacy of user queries can be afforded.

User privacy without respondent privacy. This situation is the most likely one
if private information retrieval is allowed on unmasked records. To illustrate,
assume that PIR is offered on Dataset 2 in Table 1. Even if allowed queries

198 J. Domingo-Ferrer

are only of statistical nature, a user could take advantage of PIR to submit the
following queries (assuming PIR protocols existed for those query types):

SELECT COUNT(*) FROM Dataset 2 WHERE height < 165 AND weight > 105
SELECT AVG(blood pressure) FROM Dataset 2 WHERE height < 165 AND
weight > 105

The first query tells the user that there is only one individual in the dataset
smaller than 165 cm and heavier than 105 kg. With this knowledge, the user
can establish that the average blood pressure 146 returned by the second query
corresponds to that single individual, who turns out to be someone suffering
from serious hypertension. Re-identifying such a small and heavy individual as
Mr./Mrs. X should not be too difficult. If the user is an insurance company,
Mr./Mrs. X might see his/her life insurance application rejected or accepted
only at an extremely high premium.

4 Independence of Owner Privacy and User Privacy

If a database owner allows unrestricted queries on original data and user queries
are not protected, there is neither owner privacy nor user privacy. The cases with
at least one of both properties are next discussed.

Owner privacy without user privacy. PPDM methods developed in the crypto-
graphic community in the spirit of the seminal paper [18] are special cases of
secure multiparty computation. The idea is that two or more parties owning con-
fidential databases run a data mining algorithm (e.g. a classifier) on the union
of their databases, without revealing any unnecessary information.

Thus, the users coincide with the data owners. However, the focus is on ensur-
ing the privacy of the data owned by each party (owner privacy). The analysis
or data mining algorithm run by the parties is known to all of them. Indeed,
as usual in secure multiparty computation, all parties interactively co-operate
to obtain the result of the analysis. This is hardly compatible with private in-
formation retrieval for user privacy. Thus, we can conclude that cryptographic
PPDM offers owner privacy but no user privacy.

Non-cryptographic PPDM methods developed in the data mining community
are friendlier toward user privacy, as will be discussed in the next paragraph
below. However, application of those methods without PIR also leads to owner
privacy without user privacy.

Owner privacy and user privacy. Unlike cryptographicPPDM,non-cryptographic
PPDM developed by data miners is usually non-interactive. The data owner first
protects his data and then accepts queries on them. Whatever the case, the data
owner does not need to know the exact query being computed on his protected
data, so that PIR for user privacy is compatible with non-cryptographic PPDM.

One must acknowledge here that, while some PPDM methods like [2] allow
a broad range of analyses/queries to be performed on the protected data, other

A Three-Dimensional Conceptual Framework for Database Privacy 199

methods have been designed to support a specific class of analyses on the privacy-
protected data (e.g. [5] is designed for decision-tree classifiers and methods in [25]
are designed for association rule mining). However, even with the latter methods,
the data owner does not need to know anything about the exact user analyses
beyond the (likely) fact that they belong to the class supported by the PPDM
algorithm.

User privacy without owner privacy. This is the situation if unrestricted PIR
queries are allowed by an owner on his original data. If the database is a public
one and contains non-confidential information, this is the most desirable situ-
ation. For example, in the context of Internet search engines, user privacy is
arguably the only privacy that should be cared about.

5 Tentative Technology Scoring

In order to demonstrate the usefulness of the proposed three-dimensional con-
ceptual framework, we attempt as an exercise a scoring of the non-exhaustive list
of privacy technologies mentioned in this paper. Table 2 is an assessment of how
well each technology class performs in each privacy dimension. This scoring is
qualitative and tentative, in that we base our assessment on the usual claims of
each technology class, rather than on the actual properties of specific proposals
within each class. For the reader’s orientation, we mean by SDC the methods
in [17,26]; example proposals of use-specific non-crypto PPDM are [5,25]; an ex-
ample generic non-crypto PPDM method is [2]; an example PIR method is [8].

Table 2. Tentative scoring of technology classes

Technology class Respondent Owner User
privacy privacy privacy

SDC medium-high medium none
Use-specific non-crypto PPDM medium medium-high none
Generic non-crypto PPDM medium medium-high none
Crypto PPDM high high none
PIR none none high
SDC + PIR medium-high medium high
Use-specific non-crypto PPDM + PIR medium medium-high medium
Generic non-crypto PPDM + PIR medium medium-high high

The rationale for the grades in Table 2 follows:

– Being based on multi-party secure computation, crypto PPDM methods are
the PPDM methods offering highest owner privacy. As a side property, they
also offer respondent privacy (records in the database are not leaked). In com-
parison, non-crypto PPDM only offers medium-high owner privacy; however,
as argued above, it is more flexible and it can be combined with PIR.

200 J. Domingo-Ferrer

– A distinction is made between use-specific and generic non-crypto PPDM:
when use-specific non-crypto PPDM is combined with PIR, there is some
clue on the queries made by the user (they are likely to correspond to the
uses the PPDM method is intended for); therefore generic non-crypto PPDM
is better for combination with PIR in view of attaining high user privacy.

– Non-crypto PPDM and SDC in Table 2 are assumed to rely on data masking,
rather than on query control.

– If non-crypto PPDM perturbs the data, it normally provides some level of
respondent privacy in addition to owner privacy.

– Similarly, SDC masking normally provides some level of owner privacy in
addition to respondent privacy.

Note that the last two assertions do not contradict the independence between
respondent and owner privacy, justified in Section 2 above.

6 Conclusions and Future Research

Respondent privacy, owner privacy and user privacy have been shown to be
independent, yet compatible properties. Even though satisfying one of them gives
no assurance about the others, we can state a few lessons learned which can be
used as guidelines to simultaneous fulfillment of the three privacy dimensions:

– Respondent privacy relies on data masking (e.g. for k-anonymity) or on query
control (needed if interactive queries against original databases are allowed).
Since query control is hardly compatible with user privacy, data masking
must be used for respondent privacy if the latter property must live together
with user privacy.

– Owner privacy relies on cryptographic or non-cryptographic PPDM. Being
based on interactive multiparty computation, cryptographic PPDM assumes
that the joint computation being carried out is known to all parties, which
is not compatible with user privacy. Therefore, non-cryptographic PPDM
seems a wiser choice if owner privacy is to be made compatible with user
privacy.

– Most forms of non-cryptographic PPDM rely on perturbing the original data.
If this perturbation is such that the underlying data are k-anonymized (as
in [2,12]), then owner and respondent privacy are simultaneously achieved.

Hence, one possible way to fulfill the three privacy dimensions is for a database
which is not originally k-anonymous to be k-anonymized (via microaggregation-
condensation, recoding, suppression, etc.) and to be added a PIR protocol to
protect user queries.

Future research should explore other possible solutions satisfying the privacy
of respondents, owners and users. Also, the impact on data utility of offering
the three dimensions of privacy (rather than just one or two of them) should
be investigated. An interesting challenge is to offer privacy for everyone without
incurring extra data utility penalties.

A Three-Dimensional Conceptual Framework for Database Privacy 201

Disclaimer and Acknowledgments

The author is solely responsible for the views expressed in this paper, which
do not necessarily reflect the position of UNESCO nor commit that organiza-
tion. This work was partly supported by the Spanish Ministry of Education
through projects SEG2004-04352-C04-01 ”PROPRIETAS” and CONSOLIDER
CSD2007-00004 ”ARES”, and by the Government of Catalonia under grant 2005
SGR 00446. Thanks go to Agusti Solanas for his comments on a draft version of
this paper.

References

1. Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data
mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
183–199. Springer, Heidelberg (2004)

2. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas,
D., Zhu, A.: k-Anonymity: Algorithms and hardness. Technical report, Stanford
University (2004)

3. Agrawal, R., Grandison, T., Johnson, C., Kiernan, J.: Enabling the 21st century
health care information technology revolution. Communications of the ACM 50(2),
35–42 (2007)

4. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proceed-
ings of the 28th International Conference on Very Large Databases, Hong Kong
(2002)

5. Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of the
ACM SIGMOD, pp. 439–450. ACM Press, New York (2000)

6. Aguilar, C., Deswarte, Y.: Single database private information retrieval schemes.
In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302, pp. 257–
265. Springer, Heidelberg (2006)

7. Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases.
IEEE Transactions on Software Engineering E-8, 574–582 (1982)

8. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 41–50.
IEEE Computer Society Press, Los Alamitos (1995)

9. Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census
records. Journal of Official Statistics 2(3), 329–336 (1986)

10. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation
for statistical disclosure control. IEEE Transactions on Knowledge and Data En-
gineering 14(1), 189–201 (2002)

11. Domingo-Ferrer, J., Sebé, F., Castellà, J.: On the security of noise addition for
privacy in statistical databases. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004.
LNCS, vol. 3050, pp. 149–161. Springer, Heidelberg (2004)

12. Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogenerous k-
anonymity through microaggregation. Data Mining and Knowledge Discov-
ery 11(2), 195–212 (2005)

13. Du, W., Zhan, Z.: Using randomized response techniques for privacy-preserving
data mining. In: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, D.C, pp. 505–510 (2003)

202 J. Domingo-Ferrer

14. Duncan, G.T., Mukherjee, S.: Optimal disclosure limitation strategy in statistical
databases: deterring tracker attacks through additive noise. Journal of the Ameri-
can Statistical Association 95, 720–729 (2000)

15. Evfimievski, A.: Randomization in privacy-preserving data mining. SIGKDD Ex-
plorations: Newsletter of the ACM Special Interest Group on Knowledge Discovery
and Data Mining 4(2), 43–48 (2002)

16. Gopal, R., Garfinkel, R., Goes, P.: Confidentiality via camouflage: the cvc ap-
proach to disclosure limitation when answering queries to databases. Operations
Research 50, 501–516 (2002)

17. Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst,
J., Schulte-Nordholt, E., Seri, G., DeWolf, P.-P.: Handbook on Statistical Disclo-
sure Control (version 1.0). In: Eurostat (CENEX SDC Project Deliverable) (2006)

18. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–53. Springer, Heidelberg (2000)

19. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptol-
ogy 15(3), 177–206 (2002)

20. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

21. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI International (1998)

22. Schlörer, J.: Disclosure from statistical databases: quantitative aspects of trackers.
ACM Transactions on Database Systems 5, 467–492 (1980)

23. Sweeney, L.: k-Anonimity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)

24. Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In:
2nd International Workshop on Privacy Data Management PDM 2006, p. 94. IEEE
Computer Society Press, Los Alamitos (2006)

25. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. IEEE Transactions on Knowledge and Data Engineering 16(4), 434–447
(2004)

26. Willenborg, L., DeWaal, T.: Elements of Statistical Disclosure Control. Springer,
New York (2001)

W. Jonker and M. Petković (Eds.): SDM 2007, LNCS 4721, pp. 203–212, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Novel RFID Authentication Schemes for Security
Enhancement and System Efficiency

N.W. Lo and Kuo-Hui Yeh

Department of Information Management
National Taiwan University of Science and Technology

43 Sect. 4 Keelung Rd., Taipei, 106 Taiwan, R.O.C.
Fax number: 886-2-2737-6777
nwlo@cs.ntust.edu.tw

D9409101@mail.ntust.edu.tw

Abstract. As industries aggressively deploy Radio Frequency IDentification
application systems, the user privacy invasion and system security threats are
increasingly concernd by individuals and organizations. Recently several
hash-based mutual authentication schemes have been proposed to resolve
security-related problems. However, previous schemes either suffer from
security loopholes or have system efficiency problem for identity match
process. In this paper, the security flaws of two recently proposed hash-based
authentication schemes are analyzed at first. Based on this analysis, we
identify the security and privacy criterions for the authentication process of
RFID systems, and propose a new mutual authentication scheme to eliminate
possible security flaws and enhance privacy protection to the owner of an
object with RFID tag attached on it. In addition, we develop an efficient
identity match and retrieval mechanism to relieve the heavy computation load
of traditional match scheme between received tag identity and records in
backend database of RFID systems.

Keywords: RFID; Authentication; Privacy; Security.

1 Introduction

As Radio Frequency IDentification (RFID) technology provides an efficient and
accurate way to identify physical resources and at the same time preserves very
attractive deployment characteristics to industries such as simple system installation
and deployment process, wireless accessibility and low-cost manufacture, RFID has
been considered as the next generation technology for object identification and
management in a ubiquitous network environment. In order to robustly perform
identity validation and access control in RFID systems, an efficient and reliable
authentication scheme is definitely required.

The existing RFID systems are vulnerable to many security attacks and potential
privacy threats due to the nature of restricted computation ability and limited memory
space of low-cost RFID tags. For example, RFID-tagged goods in a chain store make
themselves easily been scanned by industrial espionage activities to gather unprotected
goods information and even trace customer preferences. More sophisticated security

204 N.W. Lo and K.-H. Yeh

threats such as constellation attack, breadcrumb threat and RFID tag cloning are also
raised in the recent years. To achieve robust security and privacy requirements in RFID
systems, an authentication scheme using hash function or cryptographic unit such as
AES encryption at both the tag side and the reader/server side becomes a promising
candidate. Ohkubo et al. in [2] pointed out that in a 5-cent passive tag the number of
gates available for security design cannot exceed 2.5 to 5 K gates. In addition, according
to K. Yuksel in [4], a hash function unit with the block size of 64-bits can be
implemented under 1.7 K gates. From these observations, we assume that a one-way
hash function circuit unit can be implemented in a RFID tag with reasonable cost.

Recently the study of hash-based RFID authentication schemes [1-3, 5-9] has
developed rapidly and the accumulated achievements have drawn scholars’ attention.
However, most of previous schemes suffer from different kinds of security attacks,
privacy-related problems, and computation-consuming identity match process at the
backend server. Hence, the main purpose of this study is to remedy the security flaws
of previous schemes by introducing a novel mutual authentication scheme with
timestamp checking mechanism and one-way hash function, and provide an efficient
identity match mechanism for the backend server.

2 Related Work

Recently, much attention has been directed to hash-based RFID authentication
research due to the potential capability on security enhancement. Weis et al. first
proposed two authentication mechanisms in [1], called hash-based access control and
randomized hash-locking access control, to achieve security and privacy aspects for
RFID systems. However, since the wireless communication channel is insecure, the
attacker can manipulate the communication process during authentication to easily
break their proposed scheme with historical information gained from eavesdropping.
Because the brute-force identity search mechanism is adopted for every query in their
scheme, the backend server will encounter heavier computation load. Ohkubo et al. in
[2] proposed an authentication scheme with hashing chain mechanism. Two important
security requirements, indistinguishability and forward security, were claimed to be
achieved by their scheme. Unfortunately, this authentication mechanism cannot
prevent the replay attack. Henrici and Műller in [3] used varying identifications at
each authentication session to enhance location privacy in their RFID authentication
scheme. However, their scheme does not support the anonymity property because the
tag always responds a reader's query with the same hashed value of its secret
identification until it updates its secret identification at the end of this successful
authentication session. Yang et al. in [6] remedied the security weakness of Henrici
and Műller's scheme [3] by introducing a new authentication scheme to resolve the
location tracking problem in RFID systems. Unfortunately, their scheme cannot
provide privacy protection to the tag carrier.

In [7], An and Oh proposed a user privacy-aware authentication process which
utilizes hash function and random number generator. Due to the lack of replay attack
prevention mechanism, their scheme can be broken by sending eavesdropped
historical messages. In their scheme the backend server also spends more computation
power on the backend identity match process. Kim et al. in [9] proposed a RFID

 Novel RFID Authentication Schemes for Security Enhancement 205

authentication scheme to enhance location privacy and support forward security via
dynamically updating the secret information with specific generated stream blocks.
However, the anonymity property for RFID tags is not provided in their scheme
because the tag identification can be derived by eavesdropping multiple messages
during various authentication communications. In addition, this scheme cannot defend
against replay attack and also adopt the traditional identity match mechanism at the
backend server.

In November 2006, two hash-based authentication schemes for security
improvement in RFID systems are proposed by Osaka et al. in [8] and Park & Lee in
[5]. Osaka et al. developed an authentication scheme with ownership transfer concept
to support the ownership privacy when the ownership of RFID-tagged items is
changed. In the meantime, Park & Lee developed a novel authentication scheme to
provide stronger security for RFID systems. However, both of schemes still have
security weaknesses which will be analyzed in the following.

In terms of security analysis on Osaka et al’s authentication scheme [8], we report
our observation as follows. First, if one legitimate but malicious reader always sends
the same random number r with its query command to a specific tag, the tag will
always response the same value a until it receives update message e from the backend
server. This repeatable behavior pattern enables adversaries to trace the tag. In
addition, the replay attack cannot be prevented by the scheme because the backend
server does not support mechanisms to tell whether an incoming message is a replay
or not. In their scheme the tag does not have the verification mechanism against
incoming update message e; an attacker can send a fake update message e’ without
being noticed which will result in the shared secret identities between the tag and the
backend server out of synchronization (i.e., DoS attack). Regarding to forward
security, we show that Osaka et al’s scheme cannot protect the historical journey
trajectory of a RFID tag in case the tag is compromised during the i+1-th
authentication session. Based on this assumption, the attacker already gets the secret
identity Ek_(i+1)(ID). Consider that the attacker has eavesdropped and stored all
previous transmitted messages ai, ei and ri of each session i. The attacker can
iteratively apply the following computations to easily retrieve all previously sent
secret identities and messages: Ek_i(ID)=Ek_(i+1)(ID)⊕ei and ai= H(Ek_i(ID)⊕ri).
Hence, the forward security requirement is not fulfilled. Finally, their secret identity
match mechanism at the backend server can consume a lot of computation resources
and execution time if the total number of tag entries in the database is quite large.

Park and Lee’s scheme [5] could be better convinced after resolving a couple of
security flaws. First of all, a tag with the same H(SIDi) value will be easily traced by a
legitimate but malicious reader through a normal authentication behavior. Secondly,
the backend server cannot detect a replay attack. In Figure 1, we show another
security flaw of their scheme. If a legitimate but malicious reader sequentially invokes
two queries to one specific tag in a reasonable period of time before the tag updates
its security identification (SIDi), then the tag will response two authentication requests
A1 and A2 correspondingly. The attacker can XOR the two count_state values in A1
and A2 to eliminate the T_key; based on the known value R, the security identification
can be derived by the malicious reader. In that case, the anonymity property is
violated. In addition, once the tag was compromised by an attacker (i.e., the T_key
and R_Key will be known), the attacker can derive the random number R of each

206 N.W. Lo and K.-H. Yeh

authentication session i by XOR the eavesdropped R_Value and R_Key from each
authentication session i. With the derived security identification SIDi of each
authentication session i, all past secret information, such as T_value=SIDi⊕T_key,
count=count_state⊕T_value and C=H(flag||T_value||count||R), can be computed by
the attacker. Therefore, forward security cannot be guaranteed in their scheme either.
Finally, in their scheme malicious attacks or malfunction condition such as message
transmission interruption, will switch the normal authentication process (flag=0) into
exception situation (flag=1). The authentication process under exception situation
(flag=1) will result in heavy computation load on security identification matching
process by computing the value T_ID’=T_key⊕R and comparing H(T_ID)’=H(T_ID)
for every tuple at the backend database.

Fig. 1. The illustration of security weakness in Park & Lee’s scheme

3 Proposed Solution

In this section, based on hash function and simple XOR operation, we develop two
novel schemes for RFID systems. In Section 3.1 we depict a new authentication
scheme to remedy the security weaknesses of previous researches. The second one,
called Efficient Identity Match scheme, is illustrated in Section 3.2 to pursue better
system performance on data matching at the backend database.

3.1 New Authentication Scheme

In our protocol, we assume the tag is vulnerable to be compromised. The secret
information inside a tag, such as shared secret key and security identification, can be
retrieved and modified by the attacker once that tag is compromised. In contrast with
previous researches, insecure channels are assumed through the whole
communication environment of a RFID system.

Each tag, denoted as Tagx, is given two random secrets, the shared key value T_key
and the security identification during the i-th session SIDi, which are randomly
generated and shared with the backend server. Tagx also maintains two extra values, flag
and reader’s shared key R_key. The backend server maintains a record for each tag

 Novel RFID Authentication Schemes for Security Enhancement 207

including associated reader’s password R_Key, the shared security identification
SIDi_DB, the shared secret key T_key_DB and the timestamp of the last incoming
legitimate message Ti_DB. The security identification SIDi will be updated at both the
backend server and the corresponding tag after each successful authentication. For the
sake of simplicity, the initial values of flag and Ti_DB are set as zero here. The security
identifications associated with Tagx and backend database are both initially set as SIDx_0.

The proposed scheme considers two different situations based on previous
authentication session is safely terminated (flag=0) or not (flag=1). We depict the
detailed procedure in Figure 2.

Fig. 2. The proposed authentication scheme

Condition 1: previous authentication session is safely terminated (flag=0)

1. Reader Tagx: Query, S, R_value
Reader generates a random number R, performs XOR operation on it with the shared
secret key R_value= R_key⊕R and applies the hash function on it S=H(R). Reader
then sends (S, R_value) with a Query signal as a challenge to Tagx.
2. Tagx Reader: R1, M, m
Tagx first performs an XOR operation onto R_value and R_key to retrieve the value R'
and verifies whether H(R') is equal to S. Once the authentication of the legitimate
reader is passed, Tagx sets the value flag to 1. Next, Tagx generates a random number
m and the current timestamp Ti to compute M=((SIDi⊕m)||Ti)⊕H(m⊕T_key) and

208 N.W. Lo and K.-H. Yeh

C=H(m⊕SIDi⊕T_key⊕Ti), where Ti is used to detect the replay attack. After
dividing C into three blocks R1, R2 and R3, Tagx sends (R1, M, m) as a response to
Reader.
3. Reader Server: R1, M, m, S, R_value
Reader transmits an authentication request (R1, M, m, S, R_value) to Server.
4. Server Reader: N, n
When Server receives the authentication request, it firstly verifies whether H(R') and
S are identical as mentioned in step 2. According to our proposed EIM scheme in
Section 3.2, Server can efficiently find the corresponding data tuple associated with
Tagx from the database. Next, Server computes M⊕H(m⊕T_key_DB) to retrieve
security identification SIDi and the timestamp Ti. In order to verify the incoming
message, Server applies the following two verification processes: (1) whether the
values SIDi and SIDi_DB are the same, and (2) whether the timestamp is valid, Ti>Ti_DB
(i.e., replay attack examination). If the incoming message is legitimate, Server
calculates C’=H(m⊕SIDi⊕T_key_DB⊕Ti) and divides C’ into three blocks R’1, R’2
and R’3 to verify whether R’1 is equivalent to R1. If R’1 and R1 are identical, all
contents of the incoming message are denoted as correct. Server computes
N=R’2⊕H(n⊕T_key_DB) with a generated random number n. Finally, Server sends
(N, n) to Reader. At the same time, Server updates the shared secret information
SIDi+1_DB=SIDi⊕R’3 and Ti_DB=Ti. Note that Server can send the information of tag or
tagged item to Reader through a symmetric or asymmetric encryption.

5. Reader Tagx: N, n
Reader forwards (N, n) to Tagx. For the validity of the incoming message, Tagx
computes N⊕H(n⊕T_key) to retrieve R’2 and verifies whether R’2 is equal to R2. If
Tagx successfully completes the verification process, Tagx will change the flag value
from 1 to 0 and update the value of security identification SIDi+1 to SIDi⊕R3.

Condition 2: previous authentication session is not safely terminated (flag=1)

1. Reader Tagx: Query, S, R_value
Same as the step 1 where flag=0.
2. Tagx Reader: R1, M, m
The verification process of Reader is the same as step 2 where flag=0. When
Tagx receives the Query command issued from the Reader, Tagx first generates a
random number m and the current timestamp Ti. Then, Tagx computes
M=(Ti||H(Ti)_Tag)⊕H(m⊕T_key) and C=H(m⊕T_key⊕Ti) due to the flag value
equals 1, where H(Ti)_Tag denotes the hash value of timestamp Ti is sent from Tagx. In
stead of applying binary string (SIDi⊕m)||Ti as in Condition 1, here we use the string
Ti||H(Ti)_Tag to compute the outgoing response message M. This design can produce a
randomized output to the current session even if the previous authentication session is
not safely terminated. After dividing C into three blocks R1, R2 and R3, Tagx sends (R1,
M, m) as a response to the Reader.
3. Reader Server: R1, M, m, S, R_value
Reader sends an authentication request (R1, M, m, S, R_value) to Server.

 Novel RFID Authentication Schemes for Security Enhancement 209

4. Server Reader: N, n
First, Server verifies the legitimacy of Reader with the same procedure in step 4
where flag=0. Upon receiving the authentication request, Server uses the EIM scheme
to efficiently retrieve the corresponding data tuple in backend database. Then, Server
computes M⊕H(m⊕T_key_DB) to obtain Ti and H(Ti)_Tag. For the validity of the
incoming message, Server verifies whether the computed value H(Ti) is identical to
H(Ti)_Tag (i.e., message integrity), and whether the appended timestamp is valid,
Ti>Ti_DB. If the verification processes are passed, Server will calculate
C’=H(m⊕T_key_DB⊕Ti) and divide C’ into three blocks R’1, R’2 and R’3. If R’1 and
R1 are identical, Server will generate a random number n and compute
N=R’2⊕H(n⊕T_key_DB). Finally, Server transmits (N, n) to Reader and updates
SIDi+1_DB=H(Ti)_Tag⊕R’3 and Ti_DB=Ti.
5. Reader Tagx: N, n
Reader forwards the message (N, n) to Tagx. Then, Tagx computes N⊕H(n⊕T_key)
to retrieve R’2 and verifies the validity of incoming message (whether R’2 equals R2).
If both values are the same, Tagx changes the flag value from 1 to 0 and updates the
value of security identification SIDi+1 to H(Ti)_Tag⊕R’3.

3.2 Efficient Identity Match Scheme

Each tag Tagx stores four data in the memory including search seed IDtag, update
index k, current transaction number TID, and last successful transaction number LST.
For each tag, the backend server maintains two records to prevent DoS attack (i.e.,
shared secret information is out of synchronization). Each record contains six fields in
the database: (1) fast matching key Hn(IDtag), (2) search index value n, (3) search seed
IDtag, (4) update threshold value k, (5) current transaction number TID and (6) last
successful transaction number LST. Default values for the TID and LST are assigned
to both the backend server and the corresponding tag during system initialization. For
the sake of simplicity, the initial values of TID and LST are usually set as the same.
The fast matching key is used as a search index to efficiently find the corresponding
tuple from the backend database, where n is a pre-defined positive integer. For
security enhancement, both the backend server and corresponding tag will update the
search seed, IDtag, when the current TID is equal to (or greater than) the update
threshold value k’. The transaction numbers (TID and LST) also can be used to
prevent replay attack [3]. The normal EIM process is shown in Figure 3. We describe
the detailed procedure in the following.

1. Reader Tagx: Query
Reader issues a Query signal to Tagx.

2. Tagx Reader Server: Hm(IDtag), m, TID, ∆TID
After receiving the Query command, Tagx generates random number m (≦n), and
computes Hm(IDtag), TID=TID+1, and ∆TID=TID-LST. Then, Tagx computes the hash
chain value of IDtag with m iterations (i.e., Hm(IDtag)) and sends the result with m,
TID, ∆TID as a response message to Reader. Reader transmits an authentication
request including Hm(IDtag), m, TID, and ∆TID to Server.

210 N.W. Lo and K.-H. Yeh

3. Server Reader Tagx: Response
When Server receives an authentication request sent from Reader, Server calculates n
- m times of one-way hash function iteratively with the received Hm(IDtag) value as the
starting seed to get the fast matching key Hn(IDtag)=Hn-m(Hm(IDtag)). Server computes
the current value of the transaction number TID’ with equations TID’= LSTnew + ∆TID
or TID’= LSTold + ∆TID, based on the corresponding tuple of the matching key
Hn(IDtag). In order to prevent the replay attack, if TID’≠ TID or TID’≦TIDold, Server
discards the incoming message. The transaction number is used to update the fast
matching key for security enhancement in EIM scheme. Once the current transaction
number is greater than or equal to the pre-defined update threshold value k, Server
updates the search seed IDtag_new=H(IDtag⊕k) and value k. With the new search seed
IDtag_new, the new fast matching key Inew = Hn(IDtag_new) is computed by Server for the
data retrieval next time. Finally, Server updates the values of TID and LST
(TIDnew=LSTnew=TID’, TIDold=TID’ and LSTold=TID’-∆TID), and sends a response to
Reader. Upon receiving the response message forwarded from Reader, Tagx updates
the LST value with its TID value. Similarly, if TID is greater than or equal to the
update threshold value k, then Tagx updates k and search seed IDtag =H(IDtag⊕k).
Note that the values of k and n, which can be any positive integers, are sensitive to the
trade-off between system performance and security consideration. From the view of
system performance, small n indicates less computation load for the tag and the
backend server. In return, the tag anonymity would be vulnerable to break down. A
small number k may result in computation burden at the backend server due to
frequent updates of the fast matching key in each tuple. Nevertheless, a small number
k can provide stronger forward security in the proposed EIM scheme.

4 Security Analysis

First of all, in our scheme only randomized message contents such as (R1, M, N) and
one time valid random numbers (i.e., m and n) are transmitted through the insecure
communication channel. Therefore, message data security and tag anonymity property
are guaranteed. Secondly, due to the verification process of timestamp of the last
legitimate incoming message, this timestamp checking mechanism ensures our
scheme against replay attack. Adversary cannot use the issued authentication
message, already used in previous session, to iteratively attack the backend server.
Furthermore, the forward security is embedded in the proposed scheme since the SIDi
will be automatically updated after each successful authentication process. Finally, to
resist DoS attack, we develop two processes (flag=0 and flag=1) to successfully
update the SIDi even if the previous session is not safely terminated.

In terms of RFID system performance, we develop a novel process, called EIM
scheme, to enhance both system performance and security while performing identity
match process at the backend server. Our scheme utilizes the n iterative computation
result of one-way hash function with the initial search seed IDtag as the fast matching
key for the corresponding entry table in the database. Instead of calculating the
hashed value of secret identification for every entry to find the match entry in
database, our scheme only needs to calculate n - m times of one-way hash function
iteratively with the received Hm(IDtag) value as the starting seed. Besides, EIM
scheme maintains two records, the last one and the current one, for each tag identity

 Novel RFID Authentication Schemes for Security Enhancement 211

to defend against the DoS attack. In order to achieve anonymity property and forward
security, a fast matching key updating mechanism with the update threshold value k is
given at each tag. Replay attacks also can be solved by the proposed transaction
number mechanism similar to [3]. Note that the decision of k and n depends on the
design trade-off between system performance and security consideration as mentioned
in Section 3.2 Finally, one of the most important contributions of EIM scheme is that
EIM scheme can be implemented with any other published authentication scheme. In
other words, EIM scheme is compatible with any hash-based authentication scheme
for system performance enhancement.

Table 1 shows the proposed schemes are superior to the previous schemes by
supporting all major security, privacy and system efficiency criterions in RFID
applications environment.

Table 1. Comparison with previous authentication

Fig. 3. The proposed EIM

212 N.W. Lo and K.-H. Yeh

5 Conclusion

The main contribution of this study is to enhance previous proposed RFID
authentication schemes and improve the efficiency of identity match mechanism at
the backend server of a RFID system by developing a novel mutual authentication
scheme and an efficient identity match scheme, respectively. Based on security
analysis in Section 4, our RFID authentication scheme achieves the data security
criterion, and the privacy requirements of tag anonymity and intractability. In
addition, our schemes can defend against active attacks (DoS attack and replay attack)
and provide better system performance on identity match process than other hash-
based authentications. In conclusion, we have developed two useful and reliable
schemes for RFID authentication operation to enhance data security, privacy
protection and system performance in general RFID systems environment.

Acknowledgments. The authors gratefully acknowledge the support from iCAST and
TWISC projects sponsored by the National Science Council, Taiwan, under the
Grants No NSC95-3114-P-001-002-Y02, NSC95-3114-P-001-001-Y02 and NSC95-
2218-E-011-015.

References

1. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems. In: Security in Pervasive Computing, pp.
201–212 (2003)

2. Ohkubo, M., Suzki, K., Kinoshita, S.: Cryptographic Approach to ’Privacyfriendly’ Tags.
In: RFID Privacy Workshop, MA, USA, MIT, Cambridge (2003)

3. Henrici, D., Müller, P.: Hash-based Enhancement of Location Privacy for Radio Frequency
Identification Devices using Varying Identifiers. In: Workshop on Pervasive Computing and
Communications Security (PerSec’04) at IEEE PerCom Workshop 2004, Orlando, Florida,
March 14-17, 2004, IEEE, Los Alamitos (2004)

4. Yuksel, K.: Universal Hashing for Ultra-Low-Power Cryptographic Hardware Applications,
Master Thesis, Dept. of Electronical Engineering, WPI (2004)

5. Park, J.-S., Lee, I.-Y.: RFID Authentication Protocol Using ID Synchronization in Insure
Communication. In: The International Conference on Hybrid Information Technology
(ICHIT’06), vol. 2, pp. 664–667 (2006)

6. Yang, J., Park, J., Lee, H., Ren, K., Kim, K.: Mutual Authentication Protocol for Low-cost
RFID. In: The Encrypt Workshop on RFID and Lightweight Crypto (2005)

7. An, Y., Oh, S.: RFID System for User’s Privacy Protection. In: Asia-Pacific Conference on
Communications, pp. 516–519 (2005)

8. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An Efficient and Secure RFID Security
Method with Ownership Transfer. IEEE ICCIAS 2, 1090–1095 (2006)

9. Kim, H.-W., Lim, S.-Y., Lee, H.-J.: Symmetric Encryption in RFID Authentication Protocol
for Strong Location Privacy and Forward-Security. In: the International Conference on Hy-
brid Information Technology (ICHIT’06), vol. 2, pp. 718–723 (2006)

Author Index

Bhatti, Rafae 158
Boldt, Martin 142
Brodsky, Alexander 81

Campan, Alina 124
Carlsson, Bengt 142
Cheng, Weiwei 47
Chinaei, Amir H. 1
Chinaei, Hamid R. 1

Dekker, M.A.C. 33
Domingo-Ferrer, Josep 193

Etalle, S. 33

Farkas, Csilla 181

Grandison, Tyrone 158

Hasan, Ragib 174

Jajodia, Sushil 81
Jin, Xin 96

Larsson, Tobias 142
Lindén, Niklas 142
Lo, N.W. 203

Meyer, Paul 124

Osborn, Sylvia L. 96

Pamunuwa, Hasika 181
Pfitzmann, Birgit 18
Pieprzyk, Josef 108

Rassadko, Nataliya 64

Sion, Radu 174

Tan, Kian-Lee 47
Tompa, Frank Wm. 1
Truta, Traian Marius 124

Wang, Huaxiong 108
Wang, Peishun 108
Wijesekera, Duminda 181
Winslett, Marianne 174

Yeh, Kuo-Hui 203

Zhang, Lei 81

	Title Page
	Preface
	Organization
	Table of Contents
	A Unified Conflict Resolution Algorithm
	Introduction
	Motivating Example
	Outline

	Conflict Resolution Models
	Conflict Resolution Policies
	Combined Strategies

	Implementation
	Algorithm $Resolve()$
	Function $Propagate()$
	Computational Analysis

	Experiments
	Related Work
	Conclusions
	References

	Multi-layer Audit of Access Rights
	Introduction
	Related Work
	Model of Multi-layer Access Control
	Basic Static Model: Data-and-Policy Tree
	Extensions of the Static Model
	Dynamic Model for Queries About the Past
	Dynamic Model for Queries About the Future

	Algorithms for the Static Case
	Algorithms for Queries About the Past
	Queries About Actual Past Accesses
	Queries About Potential Past Accesses

	Algorithms for Future Queries
	Constructing a Data-and-Policy Tree
	Conclusion
	References

	Refinement for Administrative Policies
	Introduction
	Preliminaries
	Administrative RBAC Policies
	Administrative Refinement
	Ordering Administrative Privileges
	Tractability

	Related Work
	Conclusion
	References

	Authenticating kNN Query Results in Data Publishing
	Introduction
	The Big Picture
	Problem Definition
	Background
	The Basic Solution

	kNN Authentication in Native Space
	kNN Authentication in Metric Space
	Performance Study
	Effect of Number of Dimensions
	Effect of Different Dataset Size
	Effect of Different Data Distributions
	I/O Access Cost

	Conclusion
	References

	Query Rewriting Algorithm Evaluation for XML Security Views
	Introduction
	Background
	Query Rewriting Algorithm Description
	Experimental Results
	Related Work
	Runtime Policy Evaluation
	Security Views for XML
	Schema-Based Security Views

	Conclusion
	References

	Answering Queries Based on Imprecision and Uncertainty Trade-Offs in Numeric Databases
	Introduction
	Function Based Security Requirement & Data Availability
	A Function-Based Security Requirement
	A Function-Based Data Availability Measure

	Providing Maximum Data Availability for Independent Cases
	One-Dimensional Case
	Special Cases Near the Borders
	Pre-Disclosure Algorithm for Different Original Distribution
	Independent Multi-dimensional Case

	Dependent Multi-dimensional Case
	Related Work and Conclusions
	References

	Architecture for Data Collection in Database Intrusion Detection Systems
	Introduction
	Database Intrusion Detection
	Intrusion Detection and Types of IDSs
	Database IDSs

	Related Work
	Data Collection Methods for Generic IDSs
	Existing Database IDSs and Their Data Collection Methods

	Advantages and Disadvantages of Built-in DBMS Auditing
	Advantages
	Disadvantages

	Proposed Approach to Data Collection in Database IDS
	Architecture
	Initial Implementation
	Advantages
	Discussion

	Conclusion and Future Work
	References

	Common Secure Index for Conjunctive Keyword-Based Retrieval over Encrypted Data
	Introduction
	Preliminaries
	Model
	Privacy
	Security Models
	Complexity Assumptions

	Overview of Techniques
	RSA-Based Accumulators
	Paillier’s Cryptosystem
	Blind Signatures

	Constructing CSI-CKR
	SystemSetup – System Instantiation Process
	AuthCodGen – Group Authentication Process
	DataGen – Data Build Process
	DataQuery – Data Search and Download Process
	DataDcrypt – Data Decryption Process

	Correctness
	Correctness of Authentication
	Correctness of Search

	Security
	ComparisonwithParket al’s Schemes
	Conclusion and Open Problem
	References

	Generating Microdata with P-Sensitive K-Anonymity Property
	Introduction
	Privacy Models
	p-Sensitive k-Anonymity Model
	p-Sensitive k-Anonymity Model Properties
	Extended p-Sensitive k-Anonymity Model

	Privacy Algorithms
	Problem Description
	The EnhancedPKClustering Algorithm

	Preliminary Results
	Conclusions and Future Work
	References

	Preventing Privacy-Invasive Software Using Collaborative Reputation Systems
	Introduction
	Background and Related Work

	Important Considerations
	Addressing Incorrect Information
	Protecting Users’ Privacy

	System Design
	Client Design
	Server Design
	Database Design

	Discussion
	System Impact
	Improvement Suggestions
	Comparison with Existing Countermeasures

	Conclusions and Future Work
	References

	Towards Improved Privacy Policy Coverage in Healthcare Using Policy Refinement
	Introduction
	Background
	Formal Model
	Core Constructs
	Policy Coverage
	Illustrative Example

	PRIMA: The System
	Privacy Policy Definition
	Audit Management
	Policy Refinement

	Use Case Scenario
	Conclusion
	References

	Requirements of Secure Storage Systems for Healthcare Records
	Introduction
	Health Care Regulations
	HIPAA
	Occupational Safety and Health Administration Regulation
	EU Directives

	Requirements
	Limitations of Existing Storage Models
	Conclusion
	References

	An Intrusion Detection System for Detecting Phishing Attacks
	Introduction
	Phases of Phishing Attacks and Current Solutions
	Phases of Phishing
	Phishing Prevention

	Proposed Solution
	Phishing Recognition IDS
	Validating Phishing Sites

	Experimental Results
	Conclusions
	References

	A Three-Dimensional Conceptual Framework for Database Privacy
	Introduction
	Contribution and Plan of this Paper

	Independence of Respondent Privacy vs Owner Privacy
	Independence of Respondent Privacy and User Privacy
	Independence of Owner Privacy and User Privacy
	Tentative Technology Scoring
	Conclusions and Future Research
	References

	Novel RFID Authentication Schemes for Security Enhancement and System Efficiency
	Introduction
	Related Work
	Proposed Solution
	New Authentication Scheme
	Efficient Identity Match Scheme

	Security Analysis
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

